-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscore_generation.py
549 lines (458 loc) · 18.4 KB
/
score_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision
from torchvision import datasets, transforms
from models.cifar10.vgg import vgg_16_bn
from models.cifar10.resnet import resnet_56,resnet_110
from models.cifar10.googlenet import googlenet
from models.cifar10.densenet import densenet_40
from models.imagenet.resnet import resnet_50
from models.imagenet.mobilenetv2 import mobilenet_v2
from models.imagenet.mobilenetv1 import mobilenet_v1
from data import imagenet
import utils.common as utils
from CFDP_Metric import CFDP
parser = argparse.ArgumentParser(description='Calculate energy-zone ratio')
parser.add_argument(
'--score_path',
type=str,
default='score_conv/',
help='Path to save channel scores')
parser.add_argument(
'--alpha',
type=float,
default=0.03,
help='Determine the contribution balance between Spatial & Frequency')
parser.add_argument(
'--conv_fm',
type=int,
default=1,
help='Select feature maps after conv or not')
parser.add_argument(
'--data_dir',
type=str,
default='./data',
help='dataset path')
parser.add_argument(
'--dataset',
type=str,
default='cifar10',
choices=('cifar10','imagenet'),
help='dataset')
parser.add_argument(
'--job_dir',
type=str,
default='result/tmp',
help='The directory where the summaries will be stored.')
parser.add_argument(
'--arch',
type=str,
default='vgg_16_bn',
choices=('resnet_50','vgg_16_bn','resnet_56','resnet_110','densenet_40','googlenet','mobilenet_v2','mobilenet_v1'),
help='The architecture to prune')
parser.add_argument(
'--pretrain_dir',
type=str,
default='./models/vgg_16_bn.pt',
help='load the model from the specified checkpoint')
parser.add_argument(
'--limit',
type=int,
default=5,
help='The num of batch to get ratio.')
parser.add_argument(
'--batch_size',
type=int,
default=128,
help='Batch size for ratio generation, not training.')
parser.add_argument(
'--gpu',
type=str,
default='0',
help='Select gpu to use')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
cudnn.benchmark = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Data
print('==> Preparing data..')
if args.dataset=='cifar10':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root=args.data_dir, train=True, download=True, transform=transform_train)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=2)
elif args.dataset=='imagenet':
data_tmp = imagenet.Data(args)
train_loader = data_tmp.train_loader
val_loader = data_tmp.test_loader
# Model
print(f'==> Building model using alpha = {args.alpha}')
net = eval(args.arch)(compress_rate=[0.]*100)
net = net.to(device)
print(net)
if len(args.gpu)>1 and torch.cuda.is_available():
device_id = []
for i in range((len(args.gpu) + 1) // 2):
device_id.append(i)
net = torch.nn.DataParallel(net, device_ids=device_id)
if args.pretrain_dir:
# Load checkpoint.
print('==> Resuming from checkpoint..')
if args.arch=='vgg_16_bn' or args.arch=='resnet_56':
checkpoint = torch.load(args.pretrain_dir, map_location='cuda:'+args.gpu)
else:
checkpoint = torch.load(args.pretrain_dir)
if args.arch=='mobilenet_v2' or args.arch=='resnet_50':
net.load_state_dict(checkpoint)
elif args.arch=='densenet_40' or args.arch=='resnet_110':
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
new_state_dict[k.replace('module.', '')] = v
net.load_state_dict(new_state_dict)
else:
net.load_state_dict(checkpoint['state_dict'])
else:
print('please speicify a pretrain model ')
raise NotImplementedError
criterion = nn.CrossEntropyLoss()
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
#get feature map of certain layer via hook
def get_feature_hook(self, input, output):
'''Output is the feature map of the layer (B, C, H, W)
'''
global feature_result
global entropy
global total
global args
a = output.shape[0]
b = output.shape[1]
for i in range(a):
for j in range(b):
CFDP(output[i,j,:,:], alpha=args.alpha).item()
c = torch.tensor([CFDP(output[i,j,:,:], alpha=args.alpha).item() for i in range(a) for j in range(b)])
c = c.view(a, -1).float()
c = c.sum(0)
feature_result = feature_result * total + c
total = total + a
feature_result = feature_result / total
def get_feature_hook_densenet(self, input, output):
global feature_result
global total
a = output.shape[0]
b = output.shape[1]
print(output.shape)
c = torch.tensor([CFDP(output[i,j,:,:], alpha=args.alpha).item() for i in range(a) for j in range(b-12,b)])
c = c.view(a, -1).float()
c = c.sum(0)
feature_result = feature_result * total + c
total = total + a
feature_result = feature_result / total
def get_feature_hook_googlenet(self, input, output):
global feature_result
global total
a = output.shape[0]
b = output.shape[1]
c = torch.tensor([CFDP(output[i,j,:,:], alpha=args.alpha).item() for i in range(a) for j in range(b-12,b)])
c = c.view(a, -1).float()
c = c.sum(0)
feature_result = feature_result * total + c
total = total + a
feature_result = feature_result / total
def inference():
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
limit = args.limit
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(train_loader):
#use the first 5 batches to estimate the rank.
if batch_idx >= limit:
break
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
utils.progress_bar(batch_idx, limit, 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))#'''
if args.arch=='vgg_16_bn':
if len(args.gpu) > 1:
relucfg = net.module.relucfg
else:
relucfg = net.relucfg
for i, cov_id in enumerate(relucfg):
cov_layer = net.features[cov_id]
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
if not os.path.isdir(args.score_path + args.arch+'_limit%d'%(args.limit)):
os.makedirs(args.score_path+args.arch+'_limit%d'%(args.limit))
np.save(args.score_path+args.arch+'_limit%d'%(args.limit)+'/score_conv' + str(i + 1) + '.npy', feature_result.numpy())
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
elif args.arch=='resnet_56':
cov_layer = eval('net.relu')
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
if not os.path.isdir(args.score_path + args.arch+'_limit%d'%(args.limit)):
os.makedirs(args.score_path + args.arch+'_limit%d'%(args.limit))
np.save(args.score_path + args.arch+'_limit%d'%(args.limit)+ '/score_conv%d' % (1) + '.npy', feature_result.numpy())
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
# ResNet56 per block
cnt=1
for i in range(3):
block = eval('net.layer%d' % (i + 1))
for j in range(9):
if args.conv_fm == 1:
conv_layer = block[j].conv1
else:
cov_layer = block[j].relu1
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
np.save(args.score_path + args.arch +'_limit%d'%(args.limit)+ '/score_conv%d'%(cnt + 1)+'.npy', feature_result.numpy())
cnt+=1
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
if args.conv_fm == 1:
conv_layer = block[j].conv2
else:
cov_layer = block[j].relu2
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
np.save(args.score_path + args.arch +'_limit%d'%(args.limit)+ '/score_conv%d'%(cnt + 1)+'.npy', feature_result.numpy())
cnt += 1
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
elif args.arch=='densenet_40':
if not os.path.isdir('score_conv_dense/' + args.arch+'_limit%d'%(args.limit)):
os.makedirs('score_conv_dense/' + args.arch+'_limit%d'%(args.limit))
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
# Densenet per block & transition
for i in range(3):
dense = eval('net.dense%d' % (i + 1))
for j in range(12):
if args.conv_fm == 1:
cov_layer = dense[j].conv1
else:
cov_layer = dense[j].relu
if j==0:
handler = cov_layer.register_forward_hook(get_feature_hook)
else:
handler = cov_layer.register_forward_hook(get_feature_hook_densenet)
inference()
handler.remove()
np.save('score_conv_dense/' + args.arch +'_limit%d'%(args.limit) + '/score_conv%d'%(13*i+j+1)+'.npy', feature_result.numpy())
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
if i<2:
trans=eval('net.trans%d' % (i + 1))
if args.conv_fm == 1:
conv_layer = trans.conv1
else:
conv_layer = trans.relu
handler = cov_layer.register_forward_hook(get_feature_hook_densenet)
inference()
handler.remove()
np.save('score_conv_dense/' + args.arch +'_limit%d'%(args.limit) + '/score_conv%d' % (13 * (i+1)) + '.npy', feature_result.numpy())
feature_result = torch.tensor(0.)
total = torch.tensor(0.)#
if args.conv_fm == 1:
cov_layer = net.conv1
else:
conv_layer = net.relu
handler = cov_layer.register_forward_hook(get_feature_hook_densenet)
inference()
handler.remove()
np.save('score_conv_dense/' + args.arch +'_limit%d'%(args.limit) + '/score_conv%d' % (39) + '.npy', feature_result.numpy())
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
elif args.arch=='googlenet':
if not os.path.isdir(args.score_path + args.arch+'_limit%d'%(args.limit)):
os.makedirs(args.score_path + args.arch+'_limit%d'%(args.limit))
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
cov_list=['pre_layers',
'inception_a3',
'maxpool1',
'inception_a4',
'inception_b4',
'inception_c4',
'inception_d4',
'maxpool2',
'inception_a5',
'inception_b5',
]
# branch type
tp_list=['n1x1','n3x3','n5x5','pool_planes']
for idx, cov in enumerate(cov_list):
cov_layer=eval('net.'+cov)
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
if idx>0:
for idx1,tp in enumerate(tp_list):
if idx1==3:
np.save(args.score_path + args.arch+'_limit%d'%(args.limit) + '/score_conv%d_'%(idx+1)+tp+'.npy',
feature_result[sum(net.filters[idx-1][:-1]) : sum(net.filters[idx-1][:])].numpy())
#elif idx1==0:
# np.save('rank_conv1/' + args.arch + '/rank_conv%d_'%(idx+1)+tp+'.npy',
# feature_result[0 : sum(net.filters[idx-1][:1])].numpy())
else:
np.save(args.score_path + args.arch+'_limit%d'%(args.limit) + '/score_conv%d_' % (idx + 1) + tp + '.npy',
feature_result[sum(net.filters[idx-1][:idx1]) : sum(net.filters[idx-1][:idx1+1])].numpy())
else:
np.save(args.score_path + args.arch+'_limit%d'%(args.limit) + '/score_conv%d' % (idx + 1) + '.npy',feature_result.numpy())
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
elif args.arch=='resnet_110':
cov_layer = eval('net.relu')
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
if not os.path.isdir(args.score_path + args.arch+'_limit%d'%(args.limit)):
os.makedirs(args.score_path + args.arch+'_limit%d'%(args.limit))
np.save(args.score_path + args.arch+'_limit%d'%(args.limit) + '/score_conv%d' % (1) + '.npy', feature_result.numpy())
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
cnt = 1
# ResNet110 per block
for i in range(3):
block = eval('net.layer%d' % (i + 1))
for j in range(18):
cov_layer = block[j].relu1
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
np.save(args.score_path + args.arch + '_limit%d' % (args.limit) + '/score_conv%d' % (
cnt + 1) + '.npy', feature_result.numpy())
cnt += 1
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
cov_layer = block[j].relu2
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
np.save(args.score_path + args.arch + '_limit%d' % (args.limit) + '/score_conv%d' % (
cnt + 1) + '.npy', feature_result.numpy())
cnt += 1
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
elif args.arch=='resnet_50':
cov_layer = eval('net.maxpool')
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
if not os.path.isdir(args.score_path + args.arch+'_limit%d'%(args.limit)):
os.mkdir(args.score_path + args.arch+'_limit%d'%(args.limit))
np.save(args.score_path + args.arch+'_limit%d'%(args.limit) + '/score_conv%d' % (1) + '.npy', feature_result.numpy())
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
# ResNet50 per bottleneck
cnt=1
for i in range(4):
block = eval('net.layer%d' % (i + 1))
for j in range(net.num_blocks[i]):
cov_layer = block[j].relu1
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
np.save(args.score_path + args.arch+'_limit%d'%(args.limit) + '/score_conv%d'%(cnt+1)+'.npy',
feature_result.numpy())
cnt+=1
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
cov_layer = block[j].relu2
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
np.save(args.score_path + args.arch + '_limit%d' % (args.limit) + '/score_conv%d' % (cnt + 1) + '.npy',feature_result.numpy())
cnt += 1
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
cov_layer = block[j].relu3
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
if j==0:
np.save(args.score_path + args.arch + '_limit%d' % (args.limit) + '/score_conv%d' % (cnt + 1) + '.npy',
feature_result.numpy())#shortcut conv
cnt += 1
np.save(args.score_path + args.arch + '_limit%d' % (args.limit) + '/score_conv%d' % (cnt + 1) + '.npy',
feature_result.numpy())#conv3
cnt += 1
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
elif args.arch=='mobilenet_v2':
cov_layer = eval('net.features[0]')
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
if not os.path.isdir(args.score_path + args.arch+'_limit%d'%(args.limit)):
os.mkdir(args.score_path + args.arch+'_limit%d'%(args.limit))
np.save(args.score_path + args.arch+'_limit%d'%(args.limit)+ '/score_conv%d' % (1) + '.npy', feature_result.numpy())
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
cnt=1
for i in range(1,19):
if i==1:
block = eval('net.features[%d].conv' % (i))
relu_list=[2,4]
elif i==18:
block = eval('net.features[%d]' % (i))
relu_list=[2]
else:
block = eval('net.features[%d].conv' % (i))
relu_list = [2,5,7]
for j in relu_list:
cov_layer = block[j]
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
np.save(args.score_path + args.arch +'_limit%d'%(args.limit)+ '/score_conv%d'%(cnt + 1)+'.npy', feature_result.numpy())
cnt+=1
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
elif args.arch=='mobilenet_v1':
cov_layer = eval('net.conv1[2]')
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
if not os.path.isdir(args.score_path + args.arch + '_limit%d' % (args.limit)):
os.mkdir(args.score_path + args.arch + '_limit%d' % (args.limit))
np.save(args.score_path + args.arch + '_limit%d' % (args.limit) + '/score_conv%d' % (1) + '.npy',
feature_result.numpy())
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
cnt=1
for i in range(13):
block = eval('net.features[%d]' % (i))
relu_list = [2, 5]
for j in relu_list:
cov_layer = block[j]
handler = cov_layer.register_forward_hook(get_feature_hook)
inference()
handler.remove()
np.save(args.score_path + args.arch +'_limit%d'%(args.limit)+ '/score_conv%d'%(cnt + 1)+'.npy', feature_result.numpy())
cnt+=1
feature_result = torch.tensor(0.)
total = torch.tensor(0.)
#'''