diff --git a/examples/python/solve_without_api.py b/examples/python/solve_without_api.py index 9e84676fc..85e9e82b4 100644 --- a/examples/python/solve_without_api.py +++ b/examples/python/solve_without_api.py @@ -41,7 +41,7 @@ def generate_mixed_qp(n, seed=1): # solve the problem using the dense backend results2 = proxsuite.proxqp.dense.solve( - H.toarray(), g, A.toarray(), b, C.toarray(), l, u + H.toarray(order="C"), g, A.toarray(order="C"), b, C.toarray(order="C"), l, u ) # Note finally, that the matrices are in sparse format, when using the dense backend you # should convert them in dense format diff --git a/examples/python/solve_without_api_and_option.py b/examples/python/solve_without_api_and_option.py index 9e1cea272..e7534c153 100644 --- a/examples/python/solve_without_api_and_option.py +++ b/examples/python/solve_without_api_and_option.py @@ -20,7 +20,9 @@ def generate_mixed_qp(n, seed=1): P += (abs(s) + 1e-02) * spa.eye(n) P = spa.coo_matrix(P) q = np.random.randn(n) - A = spa.random(m, n, density=0.15, data_rvs=np.random.randn, format="csc").toarray() + A = spa.random(m, n, density=0.15, data_rvs=np.random.randn, format="csc").toarray( + order="C" + ) v = np.random.randn(n) # Fictitious solution delta = np.random.rand(m) # To get inequality u = A @ v