forked from KyloRen1/GPT-summarizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
80 lines (65 loc) · 2.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import argparse
import openai
from tqdm import trange
import config
from utils.open_ai import set_api_key
from utils.read_file import parse_pdf
from utils.save_file import save_txt
from utils.utils import parse_filename
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--filepath", required=True)
parser.add_argument("--model_engine", default="gpt-3.5-turbo")
parser.add_argument(
"--max_tokens", default=300, help="maximum number of tokens for summarization"
)
return parser.parse_args()
def open_ai_send_request(text_to_summarize: str, engine: str, max_tokens: int) -> str:
response = openai.ChatCompletion.create(
model=engine,
messages=[
{
"role": "user",
"content": f"Summarize the following text: '{text_to_summarize}'",
}
],
temperature=0.5,
max_tokens=max_tokens,
n=1,
stop=None,
frequency_penalty=0.5,
presence_penalty=0.5,
)
summary = response.choices[0].message.content.strip()
return summary
def request_summary(text_to_summarize: str, args) -> str:
# on evarage 100 tokens is ±75 words
if len(text_to_summarize) * config.TOKE_WORD_COEF > config.MODEL_MAX_TOKENS:
summary = list()
for i in trange(0, len(text_to_summarize), config.MODEL_MAX_TOKENS):
chunk = " ".join(text_to_summarize[i : i + config.MODEL_MAX_TOKENS])
chunck_summary = open_ai_send_request(
chunk, args.model_engine, args.max_tokens
)
summary.append(chunck_summary)
summary = "\n".join(summary)
else:
summary = open_ai_send_request(
text_to_summarize, args.model_engine, args.max_tokens
)
return summary
def summarize(args) -> None:
# reading pdf file
text = parse_pdf(args.filepath)
filename = config.CACHE_DIR / parse_filename(args.filepath)
save_txt(filename, text)
print(
"Estimated number of tokens in text: ", int(len(text) * config.TOKE_WORD_COEF)
)
# send for summarization
summary = request_summary(text, args)
save_txt(str(filename) + f'_summary_{args.max_tokens}_tokens', summary)
if __name__ == "__main__":
args = parse_args()
set_api_key(config.OPENAI_KEY_API)
summarize(args)