-
Notifications
You must be signed in to change notification settings - Fork 5
/
train_gan.py
73 lines (60 loc) · 2.78 KB
/
train_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import sys
import time
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer import Visualizer
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
def mian():
opt = TrainOptions().parse()
train_dataset = create_dataset(opt, 'train', opt.batch_size)
dataset_size = len(train_dataset)
print('The number of training images = %d' % dataset_size)
model = create_model(opt)
model.setup(opt)
visualizer = Visualizer(opt)
total_iters = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
for i, data in enumerate(train_dataset):
sys.stdout.flush()
iter_start_time = time.time()
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_iters += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data)
if opt.model == 'mdgan':
model.optimize_parameters(shuffle=True, this_iter_val=total_iters // opt.batch_size)
else:
model.optimize_parameters()
if total_iters % opt.display_freq == 0:
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_iters % opt.print_freq == 0:
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
if total_iters % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
if opt.model == 'fedgan' and epoch % opt.num_epochs == 0:
model.aggregate(epoch)
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' % (
epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()
if __name__ == '__main__':
main()