-
Notifications
You must be signed in to change notification settings - Fork 5
/
train_fedmgd.py
140 lines (119 loc) · 5.36 KB
/
train_fedmgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import sys
import time
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer import Visualizer
import os
import gc
import torch
import numpy as np
from matplotlib import pyplot as plt
import re
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
def main():
opt = TrainOptions().parse()
train_dataset = create_dataset(opt, 'train', opt.batch_size)
ctrain_dataset = create_dataset(opt, 'train', opt.ctrain_batch_size)
ctest_dataset = create_dataset(opt, 'test', opt.ctest_batch_size)
gtest_dataset = create_dataset(opt, 'global', opt.ctest_batch_size)
dataset_size = len(train_dataset)
save_dir = os.path.join(opt.checkpoints_dir, opt.name)
g_acc = []
g_loss = []
c_acc = [0 for _ in range(opt.n_client)]
c_loss = [0 for _ in range(opt.n_client)]
print('The number of training images = %d' % dataset_size)
model = create_model(opt)
model.setup(opt)
visualizer = Visualizer(opt)
total_iters = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
for i, data in enumerate(train_dataset):
sys.stdout.flush()
iter_start_time = time.time()
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_iters += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data)
model.optimize_parameters()
if total_iters % opt.display_freq == 0:
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_iters % opt.print_freq == 0:
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
if total_iters % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' % (
epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()
for k in range(opt.n_fold):
print(f'run in {k} fold:')
for epoch in range(opt.epoch_count, opt.rounds * opt.num_epochs + 1):
print('>> train C in ({})/({})'.format(epoch, opt.rounds + 1))
for i, data in enumerate(ctrain_dataset):
model.set_input(data)
model.train_C()
# if epoch % opt.num_epochs == 0:
if epoch % 1 == 0:
model.sever_train(epoch)
model.test_and_save(gtest_dataset, k, 'aggregate')
closs, c_correct, c_num_all_samples = model.test_C(ctest_dataset, k)
gc.collect()
torch.cuda.empty_cache()
if epoch % opt.save_epoch_freq == 0:
model.save_C()
if epoch == opt.rounds:
for i in range(opt.n_client):
c_acc[i] += (100. * c_correct[i] / c_num_all_samples[i]).cpu().numpy().tolist()
c_loss[i] += closs[i]
loss, correct, num_all_samples, acc = model.test_and_save(gtest_dataset, k, 'global')
g_acc.append(acc.cpu().numpy().tolist())
g_loss.append(loss)
gc.collect()
torch.cuda.empty_cache()
print(f'total result acc:{np.mean(g_acc)}, loss:{np.mean(g_loss)}')
file = save_dir + '/result.txt'
with open(file, 'a') as f:
f.write(f'global total result acc:{np.mean(g_acc)}, loss:{np.mean(g_loss)}\n')
for i in range(opt.n_client):
f.write(f'client {i} local result acc:{c_acc[i] / opt.n_fold}, loss:{c_loss[i] / opt.n_fold}\n')
f.close()
for fold in range(opt.n_fold):
with open(save_dir + f'/{fold}_aggregate_global_test.txt', 'r', encoding='utf-8') as f:
contents = f.readlines()
x = []
for j in contents:
matchObj = re.match(r'.*\((.*)%\)', j, re.M | re.I)
if matchObj:
val = float(matchObj.group(1))
x.append(val)
else:
print("No match!!")
if len(x) != 0:
plt.xlabel('epoch')
plt.ylabel('acc')
plt.title(f'{opt.n_fold} fold result')
plt.plot(x, label='fold {}'.format(fold))
plt.legend(loc='best')
plt.savefig(save_dir + '/fold_result.png')
plt.show()
if __name__ == '__main__':
main()