-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcomplex.py
62 lines (53 loc) · 1.83 KB
/
complex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import time
import traffic as tr
import math
import random
import copy
def get_random_neighbor(old_solution):
solution = copy.deepcopy(old_solution)
change_amount = random.randint(1, len(solution)//3 )
for _ in range(change_amount):
iidx = random.randint(0,len(solution)-1) # intersection index
if len(solution[iidx]) > 1:
sidx = random.randint(0,len(solution[iidx]) -1)
street = solution[iidx][sidx]
if random.random() > 0.5:
random.shuffle(solution[iidx])
elif random.random() > 0.3:
solution[iidx][sidx] = (street[0], street[1] + random.randint(1, 3) )
else:
solution[iidx][sidx] = (street[0], max(1, street[1] - 1) )
return solution
MAX_TIME = 60 * 5 - 5
start_time = time.time()
tf = tr.initialize()
uniform_solution = tf.generate_uniform_solution()
score = tf.evaluate(uniform_solution)
best_solution = tuple([uniform_solution, score])
current_solution = copy.deepcopy(best_solution)
count = 0
T = 10000
elapsed_time = time.time() - start_time
while (elapsed_time < MAX_TIME):
T = max(T * 0.99, 10)
random_neighbor = get_random_neighbor(current_solution[0])
e1 = current_solution[1]
e2 = tf.evaluate(random_neighbor)
if e2>e1 :
current_solution = (random_neighbor,e2)
e1=e2
else:
p = math.exp(-(e1-e2)/T)
if p >= random.random():
current_solution = (random_neighbor, e2)
e1 = e2
if e1 > best_solution[1]:
best_solution = current_solution
count = 0
if count > 5:
current_solution = best_solution
count = 0
count += 1
elapsed_time = time.time() - start_time
solution = best_solution[0]
tf.solution_print(solution)