PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基于PP-YOLOE的检测模型,用户可以下载模型进行使用。整理后的COCO格式VisDrone-DET数据集下载链接,检测其中的10类,包括 pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10)
,原始数据集下载链接。
注意:
- VisDrone-DET数据集包括train集6471张,val集548张,test_dev集1610张,test-challenge集1580张(未开放检测框标注),前三者均有开放检测框标注。
- 模型均只使用train集训练,在val集和test_dev集上验证精度,test_dev集图片数较多,精度参考性较高。
模型 | COCOAPI mAPval 0.5:0.95 |
COCOAPI mAPval 0.5 |
COCOAPI mAPtest_dev 0.5:0.95 |
COCOAPI mAPtest_dev 0.5 |
MatlabAPI mAPtest_dev 0.5:0.95 |
MatlabAPI mAPtest_dev 0.5 |
下载 | 配置文件 |
---|---|---|---|---|---|---|---|---|
PP-YOLOE-s | 23.5 | 39.9 | 19.4 | 33.6 | 23.68 | 40.66 | 下载链接 | 配置文件 |
PP-YOLOE-P2-Alpha-s | 24.4 | 41.6 | 20.1 | 34.7 | 24.55 | 42.19 | 下载链接 | 配置文件 |
PP-YOLOE-l | 29.2 | 47.3 | 23.5 | 39.1 | 28.00 | 46.20 | 下载链接 | 配置文件 |
PP-YOLOE-P2-Alpha-l | 30.1 | 48.9 | 24.3 | 40.8 | 28.47 | 48.16 | 下载链接 | 配置文件 |
PP-YOLOE-Alpha-largesize-l | 41.9 | 65.0 | 32.3 | 53.0 | 37.13 | 61.15 | 下载链接 | 配置文件 |
PP-YOLOE-P2-Alpha-largesize-l | 41.3 | 64.5 | 32.4 | 53.1 | 37.49 | 51.54 | 下载链接 | 配置文件 |
模型 | 数据集 | SLICE_SIZE | OVERLAP_RATIO | 类别数 | mAPval 0.5:0.95 |
APval 0.5 |
下载链接 | 配置文件 |
---|---|---|---|---|---|---|---|---|
PP-YOLOE-l | VisDrone-DET | 640 | 0.25 | 10 | 29.7 | 48.5 | 下载链接 | 配置文件 |
PP-YOLOE-l (Assembled) | VisDrone-DET | 640 | 0.25 | 10 | 37.2 | 59.4 | 下载链接 | 配置文件 |
注意:
- PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果GPU卡数或者batch size发生了改变,你需要按照公式 lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault) 调整学习率。
- 具体使用教程请参考ppyoloe。
- P2表示增加P2层(1/4下采样层)的特征,共输出4个PPYOLOEHead。
- Alpha表示对CSPResNet骨干网络增加可一个学习权重参数Alpha参与训练。
- largesize表示使用以1600尺度为基础的多尺度训练和1920尺度预测,相应的训练batch_size也减小,以速度来换取高精度。
- MatlabAPI测试是使用官网评测工具VisDrone2018-DET-toolkit。
- 切图训练模型的配置文件及训练相关流程请参照smalldet。
@ARTICLE{9573394,
author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Detection and Tracking Meet Drones Challenge},
year={2021},
volume={},
number={},
pages={1-1},
doi={10.1109/TPAMI.2021.3119563}
}