-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathloss.py
165 lines (137 loc) · 5.15 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import torch.nn as nn
import torch.nn.init as init
import torchvision.models as models
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import numpy as np
from collections import OrderedDict
import torch.nn.functional as F
from IPython import embed
def cosine_sim(im, s):
return im.mm(s.t())
class GroupWiseContrastiveLoss(nn.Module):
def __init__(self, margin=0, measure=False, max_violation=False, norm=True):
super(GroupWiseContrastiveLoss, self).__init__()
self.margin = margin
if measure == 'order':
NotImplemented
else:
self.sim = cosine_sim
self.norm = norm
self.max_violation = max_violation
def forward(self, im, s, num_clips, num_caps):
# compute image-sentence score matrix
scores = self.sim(im, s)
# generate mask
N_ = len(num_clips)
scores_reduced = Variable(torch.zeros(N_, N_).cuda())
assert N_ == len(num_caps)
for i in range(N_):
clip_start, clip_end = sum(num_clips[0:i]), sum(num_clips[0:i+1])
for j in range(N_):
cap_start, cap_end = sum(num_caps[0:j]), sum(num_caps[0:j+1])
if self.max_violation:
scores_reduced[i, j] = scores[clip_start:clip_end, cap_start:cap_end].max()
else:
scores_reduced[i, j] = scores[clip_start:clip_end, cap_start:cap_end].mean()
diagonal = scores_reduced.diag().view(N_, 1)
d1 = diagonal.expand_as(scores_reduced)
d2 = diagonal.t().expand_as(scores_reduced)
# compare every diagonal score to scores in its column
# caption retrieval
cost_s = (self.margin + scores_reduced - d1).clamp(min=0)
# compare every diagonal score to scores in its row
# image retrieval
cost_im = (self.margin + scores_reduced - d2).clamp(min=0)
mask = torch.eye(scores_reduced.size(0)) > .5
I = Variable(mask)
if torch.cuda.is_available():
I = I.cuda()
cost_s = cost_s.masked_fill_(I, 0)
cost_im = cost_im.masked_fill_(I, 0)
# keep the maximum violating negative for each query
if self.max_violation:
cost_s = cost_s.max(1)[0]
cost_im = cost_im.max(0)[0]
#embed()
if self.norm:
return (cost_s.sum() + cost_im.sum()).div(len(num_clips) * len(num_caps))
else:
return cost_s.sum() + cost_im.sum()
#return cost_s.sum() + cost_im.sum()
class ContrastiveLoss(nn.Module):
def __init__(self, margin=0, measure=False, max_violation=False, norm=True):
super(ContrastiveLoss, self).__init__()
self.margin = margin
if measure == 'order':
NotImplemented
else:
self.sim = cosine_sim
self.norm = norm
self.max_violation = max_violation
def forward(self, im, s):
# compute image-sentence score matrix
scores = self.sim(im, s)
diagonal = scores.diag().view(im.size(0), 1)
d1 = diagonal.expand_as(scores)
d2 = diagonal.t().expand_as(scores)
# compare every diagonal score to scores in its column
# caption retrieval
cost_s = (self.margin + scores - d1).clamp(min=0)
# compare every diagonal score to scores in its row
# image retrieval
cost_im = (self.margin + scores - d2).clamp(min=0)
# clear diagonals
mask = torch.eye(scores.size(0)) > .5
I = Variable(mask)
if torch.cuda.is_available():
I = I.cuda()
cost_s = cost_s.masked_fill_(I, 0)
cost_im = cost_im.masked_fill_(I, 0)
# keep the maximum violating negative for each query
if self.max_violation:
cost_s = cost_s.max(1)[0]
cost_im = cost_im.max(0)[0]
loss = cost_s.sum() + cost_im.sum()
if self.norm:
return (cost_s.sum() + cost_im.sum()).div(im.shape[0] * s.shape[0])
else:
return cost_s.sum() + cost_im.sum()
# return cost_s.sum()
class CenterLoss(nn.Module):
def __init__(self, margin=0, measure=False, max_violation=False, tune_center=False):
super(CenterLoss, self).__init__()
self.margin = margin
self.sim = cosine_sim
self.max_violation = max_violation
self.tune_center=tune_center
def forward_loss(self, im, vid, seg_num):
# compute image-sentence score matrix
if self.tune_center:
pass
else:
vid = vid.detach()
scores = self.sim(im, vid)
middle_block = Variable(torch.zeros(scores.shape[0])).cuda()
mask = torch.zeros(scores.shape)
for i in range(len(seg_num)):
cur_block = scores[sum(seg_num[0:i]):sum(seg_num[0:i+1]), i]
middle_block[sum(seg_num[0:i]):sum(seg_num[0:i+1])] = cur_block
mask[sum(seg_num[0:i]):sum(seg_num[0:i+1]), i] = 1
middle_block_reshape = middle_block.view(middle_block.shape[0],1).expand_as(scores)
# compare every diagonal score to scores in its column
# caption retrieval
cost_s = (self.margin + scores - middle_block_reshape).clamp(min=0)
# clear diagonals
mask = mask > .5
I = Variable(mask)
if torch.cuda.is_available():
I = I.cuda()
cost_s = cost_s.masked_fill_(I, 0)
# keep the maximum violating negative for each query
if self.max_violation:
cost_s = cost_s.max(1)[0]
return cost_s.sum()
def forward(self, clips, videos, caps, paragraphs, num_clips, num_caps):
return self.forward_loss(clips, videos, num_clips) + self.forward_loss(caps, paragraphs, num_caps)