-
Notifications
You must be signed in to change notification settings - Fork 836
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
382 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,344 @@ | ||
{ | ||
"metadata": { | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.7-final" | ||
}, | ||
"orig_nbformat": 2, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2, | ||
"cells": [ | ||
{ | ||
"source": [ | ||
"\n", | ||
"# Scale Seldon Deployments based on Prometheus Metrics.\n", | ||
"This notebook shows how you can scale Seldon Deployments based on Prometheus metrics via KEDA. \n", | ||
"\n", | ||
"[KEDA](https://keda.sh/) is a Kubernetes-based Event Driven Autoscaler. With KEDA, you can drive the scaling of any container in Kubernetes based on the number of events needing to be processed. \n", | ||
"\n", | ||
"With the support of KEDA in Seldon, you can scale your seldon deployments with any scalers listed [here](https://keda.sh/docs/2.0/scalers/).\n", | ||
"In this example we will scale the seldon deployment with Prometheus metrics as an example." | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"source": [ | ||
"## Install Seldon Core\n", | ||
"\n", | ||
"Follow the [Seldon Core Install documentation](https://docs.seldon.io/projects/seldon-core/en/latest/workflow/install.html)." | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl create namespace seldon-system" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!helm install seldon-core seldon-core-operator --repo https://storage.googleapis.com/seldon-charts --namespace seldon-system" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl get pod -n seldon-system" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"## Install Seldon Core Analytics" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"source": [ | ||
"seldon-core-analytics contains Prometheus and Grafana installation with a basic Grafana dashboard showing the default Prometheus metrics exposed by Seldon for each inference graph deployed. \n", | ||
"Later we will use the Prometheus service installed to provide metrics in order to scale the Seldon models." | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!helm install seldon-core-analytics seldon-core-analytics --repo https://storage.googleapis.com/seldon-charts --namespace seldon-system" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl get pod -n seldon-system" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"## Install KEDA" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"source": [ | ||
"!kubectl apply -f https://github.com/kedacore/keda/releases/download/v2.0.0-beta/keda-2.0.0-beta.yaml" | ||
], | ||
"cell_type": "code", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl get pod -n keda" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"## Create model with KEDA" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"source": [ | ||
"To create a model with KEDA autoscaling you just need to add a KEDA spec refering in the Deployment, e.g.:\n", | ||
"```yaml\n", | ||
"kedaSpec:\n", | ||
" pollingInterval: 15 # Optional. Default: 30 seconds\n", | ||
" minReplicaCount: 1 # Optional. Default: 0\n", | ||
" maxReplicaCount: 5 # Optional. Default: 100\n", | ||
" triggers:\n", | ||
" - type: prometheus\n", | ||
" metadata:\n", | ||
" # Required\n", | ||
" serverAddress: http://seldon-core-analytics-prometheus-seldon.seldon-system.svc.cluster.local\n", | ||
" metricName: access_frequency\n", | ||
" threshold: '10'\n", | ||
" query: rate(seldon_api_executor_client_requests_seconds_count{seldon_app=~\"seldon-model-example\"}[10s]\n", | ||
"```\n", | ||
"The full SeldonDeployment spec is shown below." | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!pygmentize model_with_keda_prom.yaml" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl create -f model_with_keda_prom.yaml" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl rollout status deploy/$(kubectl get deploy -l seldon-deployment-id=seldon-model -o jsonpath='{.items[0].metadata.name}')" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"## Create Load" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"source": [ | ||
"We label some nodes for the loadtester. We attempt the first two as for Kind the first node shown will be the master." | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"source": [ | ||
"!kubectl label nodes $(kubectl get nodes -o jsonpath='{.items[0].metadata.name}') role=locust\n", | ||
"!kubectl label nodes $(kubectl get nodes -o jsonpath='{.items[1].metadata.name}') role=locust" | ||
], | ||
"cell_type": "code", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"source": [ | ||
"Before add loads to the model, there is only one replica" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl get deployment seldon-model-example-0-classifier" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!helm install seldon-core-loadtesting seldon-core-loadtesting --repo https://storage.googleapis.com/seldon-charts \\\n", | ||
" --set locust.host=http://seldon-model-example:8000 \\\n", | ||
" --set oauth.enabled=false \\\n", | ||
" --set locust.hatchRate=1 \\\n", | ||
" --set locust.clients=1 \\\n", | ||
" --set loadtest.sendFeedback=0 \\\n", | ||
" --set locust.minWait=0 \\\n", | ||
" --set locust.maxWait=0 \\\n", | ||
" --set replicaCount=1" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"After a few mins you should see the deployment scaled to 5 replicas" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl get deployment/seldon-model-example-0-classifier scaledobject/seldon-model-example-0-classifier" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"## Remove Load" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!helm delete seldon-core-loadtesting" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"After 5-10 mins you should see the deployment replica number decrease to 1" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl get pods,deployments,hpa,scaledobject" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl delete -f model_with_keda_prom.yaml" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
] | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
|
||
apiVersion: machinelearning.seldon.io/v1 | ||
kind: SeldonDeployment | ||
metadata: | ||
name: seldon-model | ||
spec: | ||
name: test-deployment | ||
predictors: | ||
- componentSpecs: | ||
- spec: | ||
containers: | ||
- image: seldonio/mock_classifier_rest:1.3 | ||
imagePullPolicy: IfNotPresent | ||
name: classifier | ||
resources: | ||
requests: | ||
cpu: '0.5' | ||
kedaSpec: | ||
pollingInterval: 15 # Optional. Default: 30 seconds | ||
minReplicaCount: 1 # Optional. Default: 0 | ||
maxReplicaCount: 5 # Optional. Default: 100 | ||
triggers: | ||
- type: prometheus | ||
metadata: | ||
# Required | ||
serverAddress: http://seldon-core-analytics-prometheus-seldon.seldon-system.svc.cluster.local | ||
metricName: access_frequency | ||
threshold: '10' | ||
query: rate(seldon_api_executor_client_requests_seconds_count{seldon_app=~"seldon-model-example"}[10s]) | ||
terminationGracePeriodSeconds: 1 | ||
graph: | ||
children: [] | ||
endpoint: | ||
type: REST | ||
name: classifier | ||
type: MODEL | ||
name: example |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters