Skip to content

Latest commit

 

History

History
702 lines (514 loc) · 28.9 KB

others.md

File metadata and controls

702 lines (514 loc) · 28.9 KB

近似最近傍探索の最前線
[link]

Python: pandas-profiling でデータセットの概要を確認する
[link]

google images downloader
[link]

確率数理要論メモ
[link]

Google Colaboratoryによる作図支援コード
[tweet]
[link]

Albumentation
image augmentation library
[link]

対話システムライブコンペティション
[telegram bot]

Text2HeatMap
[link]

reinforcement learning lecture
[link]

Thinking machineに向けて
[link]

Statistical Methods for HCI Research [link]

semi auto image annotation tool
[link]

Building Machines that Learn & Think Like People - Prof. Josh Tenenbaum ICML2018
[video]

pHash with python pip
[link]

ESPNET
[link]
[slide(ja)]
End-to-End speech processing toolkit (speech recognition)

google iamges downloader
[link]

browser based segmentation annotation tool
[link]

Keras GAN zoo
[link]

opentonz
[link]

数式の読み方、大学で学ぶ数式   [link]

convnet-drawer
[link]

youtube downloader
[link]
[pytube]

Hyper Collocation dictionary based on arXiv repository
[paper]

UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Leland McInnes, John Healy
[paper]
[code]

Picture collage maker in Python
[link]

Academic PhraseBank
[link]

googliser (Image search and saving tool)
[link]

MIT AGI lectures
[link]

RISE   slide style of jupyter notebook
[link]

MuJoCo Plugin and Unity Integration
[link]

Deep Learning: A Critical Appraisal
Gary Marcus
[paper]

python pptx
[qiita]
[code]

Marp:Markdown Presentation Writer
[link]

Baysian optimization tool
[link]

The Human Annotation Tool
[link]

Computational Optimal Transport
[paper]

微分・積分の先にあるもの― 変分法入門 ―
[link]

ニューラルネットの学習過程の可視化を題材に、Jupyter + Bokeh で動的な描画を行う方法の紹介
[link]

Gtrace
continuous emotion annotation to time-series data
[link]

ArXiv api in python
[link]

微分幾何講義ノート
[link]

PRML解答集
[link]

language detection(java)
[link]

Facets
[link]  

Django REST Framework
[link]
[Django REST Frameworkを使って爆速でAPIを実装する]

Neural Text-Entity Encoder (NTEE)
[link]

Resembla: Word-based Japanese similar sentence search library
[link]

Augmentor (image augmentation library)
[link]

material design (for programming)
[link]

Gathering Human Feedback
[link]

Deep Learninng Summer School Slides
[link]

Deep Learning for Semantic Composition(ACL2017 tutorial)
[link]

松尾研PRML輪講資料
[link]

Image annotation tool
[link]

Seeing Theory(統計確率の知識の可視化)
[link]

これだけ覚えておけばOK!シェルスクリプトで冪等性を担保するためのTips集
[qiita]

WebDNN: Fastest DNN Execution Framework on Web Browser
[link]

Jupyter Notebookでプレゼンをするとっても便利な方法
[qiita]

藤吉先生 動画像理解技術とその応用
[link]

Training object class detectors with click supervision
Dim P. Papadopoulos, Jasper R. R. Uijlings, Frank Keller, Vittorio Ferrari
[paper]

pytorch-cheatsheet
[link]

OpenCVによるアニメ顔画像検出
[link]
[lbpcascade_animeface]

自然言語処理における前処理の種類とその威力
[qiita]  

Single Shot Multibox Detector (SSD)
[code]

Distill
[link]

Terminal Markdown Viewer
[link]

Widget based progress bar for Jupyter (IPython Notebook)
[link]
[link]

chainercv
[link]

Understanding the brain with the help of artificial intelligence
[link]

書き割りシステム
[link]

Is Saki #delicious? The Food Perception Gap on Instagram and Its Relation to Health  
Ferda Ofli, Yusuf Aytar, Ingmar Weber, Raggi al Hammouri, Antonio Torralba
[paper]

Emergence of Language with Multi-agent Games: Learning to Communicate with Sequences of Symbols
Serhii Havrylov, Ivan Titov
[paper]

Recognizing Dynamic Scenes with Deep Dual Descriptor based on Key Frames and Key Segments
Sungeun Hong, Jongbin Ryu, Woobin Im, Hyun S. Yang
[paper]

Offline bilingual word vectors, orthogonal transformations and the inverted softmax
Samuel L. Smith, David H. P. Turban, Steven Hamblin, Nils Y. Hammerla
[paper]

Tensorflow Fold
[link]

FPGA高位合成
[slide]

自動テスト
[link]

IIBMP2016 深層生成モデルによる表現学習
[slide]

Chainerでファインチューニングするときの個人的ベストプラクティス
[link]

ニューラルネットワークの学習の工夫
[link]

CNN による画像分類で使われる前処理・テスト時処理まとめ
[link]

機械学習の重要なアプローチ:ベイズ理論
[link]

Benchmarking State-of-the-Art Deep Learning Software Tool
[paper]

Kaggle Kernel
[link]

単語の埋め込みベクトル集
[link]

**グラム先生Dynet解説   [link]  

渡辺澄夫先生資料
[link1]
[link2]

Learning Language Games through Interaction()
Sida I. Wang, Percy Liang, Christopher D. Manning
[paper]
[project]
[slideshare]

情報幾何の基礎とEMアルゴリズムの解釈
[link]

Physical Causality of Action Verbs in Grounded Language Understanding(ACL2016)
Qiaozi Gao† Malcolm Doering‡∗ Shaohua Yang† Joyce Y. Chai†
[paper]
[slideshare]

Deep Learningライブラリ 色々つかってみた感想まとめ
[link]

Unsupervised Learning of Video Representations using LSTMs(ICML)
[paper]

新たなRNNと自然言語処理
[paper]

Deep nets for local manifold learning
[paper]

An overview of gradient descents
[link]
[link(ja)]

arxiv user survey report
[link]

Layer Normalization
Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton
[paper]
[code]

On Multiplicative Integration with Recurrent Neural Networks
Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, Ruslan Salakhutdinov
[paper]

A unified framework for information integration based on information geometry(ArXiv)
[paper]

行列分解
Gated Probabilistic Matrix Factorization:Learning Users’ Attention from Missing Values
[paper]

人狼知能関係
[blog]
[人狼BBS]
[simple werewolf] chat-based
[idiap] ASR-based
[brenbarn] chat-based

AWS GPUインスタンス使い方と注意点
[link]

Unitary Evolution Recurrent Neural Networks
[[paper]

faster-RCNN
[figure]

##DeepLearner collection [link]

##GAN tips Improved Techniques for Training GANs(ArXiv)
[paper]

InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets(ArXiv)
[paper]

##Papers 16 Free Machine Learning Books
[paper]

Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization(ICML2016)
[paper]
[supplement]

Efficient Algorithms for Adversarial Contextual Learning(ICML2016)
[paper]
[supplement]

Learning to Generate with Memory(ICML2016)
[paper]
[supplement]

Learning High-Level Planning from Text
S.R.K. Branavan, Nate Kushman, Tao Lei, Regina Barzilay
[paper]

Psycholinguistic Features for Deceptive Role Detection in Werewolf(NAACL2016)
[paper]

The Manifold Tangent Classifier(NIPS)
Salah Rifai, Yann N. Dauphin, Pascal Vincent, Yoshua Bengio, Xavier Muller
[papper]

#Other materials 自然言語処理でメタファーをどう扱うか
[slide]

optical flow
[qiita]

Markdown Resume Generator
[link]

言語情報処理ポータル
[link]

blogpost about AI
[link]

elementary proof ofr sion's minimax theorem
[link]

関西CV・PRML勉強会
[link]

recipe API
[paper]

Introduction to Information Retrieval
[link]

Attention
[slideshare]

Information Geometry [www link]
[link]
[link]
[text English]
[text]
[blog]
[blog]
[site]

CNN
[for biginer]

Reinforcement Learning
for biginer
[link]
[link]
[slide]
[video]
[qiita]
[convergence cheatsheet]
Reinforcement Learning: An Introduction (by Richard S. Sutton and Andrew G. Barto)
[link]

POMDP [paper1]
[paper2]

Active Learning
[survey]
[slide]

survey [link]
DQN-chainer [code]
[description]
[blog] Active Object Localization with Deep Reinforcement Learning [paper]
OpenAI
[link] [api Torch]
LIS
[link]
SIGverse
[link]

全脳アーキテクチャ勉強会
[言語と画像の表現学習]

Learning Continuous Control Policies by Stochastic Value Gradients
[slide]

Abstract Meaning Representation
[introduction

R-CNN
[reddit]

HMM
[tensorflow]

Look and Think Twice: Capturing Top-Down Visual Attention with Feedback Convolutional Neural Networks (ICCV2015)
[paper]

Text Understanding from Scratch
Xiang Zhang, Yann LeCun
[paper]

ROS programing
[link]

研究初心者のためのJAVA講座
[link]

Reinforcement Learning Neural Turing Machine [gitxiv]

Computer Vision: Models, Learning, and Inference
[link]

topic model
[link1]
[blog:coherence]

Quantum Annealing
[slideshare]

reddit [SOTA image-caption
[Nando de Freitas]

Python
[link]
[Dive Into Python]
[Dive Into Python3 Japanese]
[duke]

NMF
[slide]
[multichannel sound source separation]

Kernel [slide]

Statistics Who do you love most? Your left-tail or your right tail?]

##Evaluation Metrics
SSIM (Structural SIMilarity)
pixel based image similarity metric
[link]
[paper]
[python code]

##Educational Video
Educational Videos Collections
[link]

Coursera Machine Learning (Japanese subtitle avaiable)   [link]

Bayes Inference and Graphical Model (Japanese)
[link

Stanford CV Lecture [link]

社会人のためのデータサイエンス演習('16/4/19~)
[link]

Google: Deep Learning Taking machine learning to the next level
learn how to use Tensorflow
[link] [ArXiv]
[tips]

**エンジニアとして知っておくと幸せになれる(かもしれない)機械学習とTensorFlowのこと [link]

Python
[link]
[Study Guide]

##Tools graph-tool
[link]

Sentencepiece
[qiita]

MyScript (write -> tex)
[link]

日本語正規化
[code]

Scalable Bayesian Optimization Using Deep Neural Networks
neural networks as an alternative to GPs
[GitXiv]

Top-Down BTG-based Preordering
[code]

Qiita
[write math]

Bokeh
python local server[link]
Deep Learning Frameworks COMPARATIVE STUDY OF CAFFE, NEON, THEANO, AND TORCH FOR DEEP LEARNING
[paper]
CNTK, the Computational Network Toolkit by Microsoft Research
[link]
Cloud Machine Learning
[article] keras
[Japanese ref]
[link]
[augmentation]

Tensorflow tutorial
[link]

libsvm
[code]
[practical guide]
[guide slide]

sh
[link]

python2commandline
[link]

emotiv
[emotiv] tools
[emokit]
[emofox]

Application

Ruby on Rails [link] [link2]

some tips

research mind
[link]
X->Y Y research is not always simple application of X
[link]
ネットによる公開討論会”独創的研究とは”
[link]

research tips
[slide]

how to write paper
[link]
by Simon Peyton Jones(MSR,Cambridge) [video]
[松尾ぐみの論文の書き方]
[link]
[cvpr]
[stanford]
[table]
[link]
[link]
[スタンフォードで学んだ研究の生産性を上げる4つの方法]

how to peer review
[link]

presentation
[link]
[link]

paper search
PoEC[link]
exemplar[link]

data,code manegement
[link]

coding
[link]

Grammaly
英文校正ツール
[link]  

to correct misuse phrase
[link]

correcting with google translate
[article]
[blog]

kaggle
[link]
[Tips]

how to make presentation
[link]
[link]

manga like figure generation using matplotlib
[[link(http://www.procrasist.com/entry/python-xkcd)]

#Educational Application SAKUMON (ICWL2007)
[paper]
#Crowdsouecing crowdflower
[make]
[task]
[top]

#gui
Qt
[link]
Processing
[link]
Dynamic Draw
[link]
wxwidgets
[link]