Twins (NeurIPS'2021)
@article{chu2021twins,
title={Twins: Revisiting spatial attention design in vision transformers},
author={Chu, Xiangxiang and Tian, Zhi and Wang, Yuqing and Zhang, Bo and Ren, Haibing and Wei, Xiaolin and Xia, Huaxia and Shen, Chunhua},
journal={arXiv preprint arXiv:2104.13840},
year={2021}
}
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|---|
UperNet | ImageNet-1k-224x224 | SVT-S | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 46.16% | cfg | model | log |
UperNet | ImageNet-1k-224x224 | SVT-B | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 48.05% | cfg | model | log |
UperNet | ImageNet-1k-224x224 | SVT-L | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 49.80% | cfg | model | log |
UperNet | ImageNet-1k-224x224 | PCPVT-S | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 46.07% | cfg | model | log |
UperNet | ImageNet-1k-224x224 | PCPVT-B | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 48.06% | cfg | model | log |
UperNet | ImageNet-1k-224x224 | PCPVT-L | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 49.35% | cfg | model | log |
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code s757