Skip to content

Latest commit

 

History

History

psanet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Introduction

Official Repo

Code Snippet

PSANet (ECCV'2018)
@inproceedings{zhao2018psanet,
    title={Psanet: Point-wise spatial attention network for scene parsing},
    author={Zhao, Hengshuang and Zhang, Yi and Liu, Shu and Shi, Jianping and Change Loy, Chen and Lin, Dahua and Jia, Jiaya},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    pages={267--283},
    year={2018}
}

Results

PASCAL VOC

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 77.06% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 76.92% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 78.97% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 77.90% cfg | model | log

ADE20k

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 41.99% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 40.26% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 43.85% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 42.05% cfg | model | log

CityScapes

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 78.88% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 76.66% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 79.65% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 77.04% cfg | model | log

More

You can also download the model weights from following sources: