English | 简体中文
Version: 1.0.0
Category: Object Detection
Algorithm: Swift-YOLO
Dataset: Digital Meter Electricity
Class: 0
, 1
, 2
, 3
, 4
, 5
, 6
, 7
, 8
, 9
, -
The model is a Swift-YOLO model trained on the Digital Meter Water dataset, which can detect the water meter number.
Type | Batch | Shape | Remark | |
---|---|---|---|---|
Input | image | 1 | [192, 192, 3] | The input image should be resized to 192x192 pixels. |
Output | bbox | 1 | [2268, 15] | The output is a 2268x15 tensor, where 2268 is the number of candidate boxes and 15 is [x, y, w, h, score, [class]] |
Backend | Precision | mAP(%) | MACs(MB) | Params(M) | Peek RAM(MB) | Inference(ms) | Download | Author |
---|---|---|---|---|---|---|---|---|
PyTorch | FLOAT32 | 95.30 | 91.8 | 0.67 | - | - | Link | Seeed Studio |
ONNX | FLOAT32 | 91.80 | - | 0.67 | 1.2 | - | Link | Seeed Studio |
TFLite | FLOAT32 | 91.80 | 89.0 | - | 1.2 | - | Link | Seeed Studio |
TFLite | INT8 | 88.30 | 89.0 | - | 0.35 | 691.0(1) | Link | Seeed Studio |
TFLite(vela) | INT8 | 88.30 | 89.0 | - | 0.35 | 49(2) | Link | Seeed Studio |
Table Notes:
- Evaluation Parameters: Confidence Threshold: 0.001, IoU Threshold: 0.55, mAP Eval IoU: 0.50..
- Backend: The deep learning framework used to infer the model.
- Precision: The numerical precision used for training the model.
- Metrics: The metrics used to evaluate the model.
- Inference(ms): The inference time of the model in milliseconds.
- 1: xiao_esp32s3.
- 2: grove_vision_ai_we2.
- Link: The link to the model.
- Author: The author of the model.
MIT