Skip to content

Latest commit

 

History

History
50 lines (34 loc) · 4.08 KB

Digital_Meter_Water_Swift-YOLO_192.md

File metadata and controls

50 lines (34 loc) · 4.08 KB

Digital Meter Water - Swift-YOLO

English | 简体中文 Open in Colab

Version: 1.0.0

Category: Object Detection

Algorithm: Swift-YOLO

Dataset: Digital Meter Electricity

Class: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -

Digital Meter Water

The model is a Swift-YOLO model trained on the Digital Meter Water dataset, which can detect the water meter number.

Network

Type Batch Shape Remark
Input image 1 [192, 192, 3] The input image should be resized to 192x192 pixels.
Output bbox 1 [2268, 15] The output is a 2268x15 tensor, where 2268 is the number of candidate boxes and 15 is [x, y, w, h, score, [class]]

Benchmark

Backend Precision mAP(%) MACs(MB) Params(M) Peek RAM(MB) Inference(ms) Download Author
PyTorch FLOAT32 95.30 91.8 0.67 - - Link Seeed Studio
ONNX FLOAT32 91.80 - 0.67 1.2 - Link Seeed Studio
TFLite FLOAT32 91.80 89.0 - 1.2 - Link Seeed Studio
TFLite INT8 88.30 89.0 - 0.35 691.0(1) Link Seeed Studio
TFLite(vela) INT8 88.30 89.0 - 0.35 49(2) Link Seeed Studio

Table Notes:

  • Evaluation Parameters: Confidence Threshold: 0.001, IoU Threshold: 0.55, mAP Eval IoU: 0.50..
  • Backend: The deep learning framework used to infer the model.
  • Precision: The numerical precision used for training the model.
  • Metrics: The metrics used to evaluate the model.
  • Inference(ms): The inference time of the model in milliseconds.
    • 1: xiao_esp32s3.
    • 2: grove_vision_ai_we2.
  • Link: The link to the model.
  • Author: The author of the model.

License

MIT