Skip to content

Latest commit

 

History

History
49 lines (33 loc) · 4.06 KB

CIFAR-10_Classification_MobileNetV2_0.35_Rep_32.md

File metadata and controls

49 lines (33 loc) · 4.06 KB

CIFAR-10 Classification - MobileNetV2 0.35 Rep

English | 简体中文 Open in Colab

Version: 1.0.0

Category: Image Classification

Algorithm: MobileNetV2 0.35 Rep

Dataset: CIFAR-10

Class: Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, Truck

CIFAR-10 Classification

The model is a vision model designed for CIFAR-10 classification. It utilizes the SSCMA training and employs the MobileNetV2 (0.35) Rep algorithm.

Network

Type Batch Shape Remark
Input image 1 [32, 32, 3] The input image should be resized to 32x32 pixels
Output classification 1 [10] The output is a 10-dimension vector, each of which represents the probability of the corresponding class.

Benchmark

Backend Precision Top-1(%) Top-5(%) Flops(M) Params(M) Inference(ms) Download Author
PyTorch FLOAT32 74.76 98.26 2.10 1.20 - Link Seeed Studio
ONNX FLOAT32 74.76 98.26 2.10 1.20 - Link Seeed Studio
TFLite FLOAT32 74.76 98.26 2.10 1.20 - Link Seeed Studio
TFLite INT8 74.56 98.29 2.10 1.20 13(1) Link Seeed Studio
TFLite(vela) INT8 74.56 98.29 2.10 1.20 2.0(2) Link Seeed Studio

Table Notes:

  • Backend: The deep learning framework used to infer the model.
  • Precision: The numerical precision used for training the model.
  • Metrics: The metrics used to evaluate the model.
  • Inference(ms): The inference time of the model in milliseconds.
    • 1: xiao_esp32s3.
    • 2: grove_vision_ai_we2.
  • Link: The link to the model.
  • Author: The author of the model.

License

MIT