-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathNearestNeighbor.cs
97 lines (81 loc) · 3.85 KB
/
NearestNeighbor.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/*****************************************************************************
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
******************************************************************************/
using Tensorflow;
using Tensorflow.NumPy;
using static Tensorflow.Binding;
namespace TensorFlowNET.Examples
{
/// <summary>
/// A nearest neighbor learning algorithm example
/// This example is using the MNIST database of handwritten digits
/// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/nearest_neighbor.py
/// </summary>
public class NearestNeighbor : SciSharpExample, IExample
{
Datasets<MnistDataSet> mnist;
NDArray Xtr, Ytr, Xte, Yte;
public int? TrainSize = null;
public int ValidationSize = 5000;
public int? TestSize = null;
public ExampleConfig InitConfig()
=> Config = new ExampleConfig
{
Name = "Nearest Neighbor",
Enabled = true,
IsImportingGraph = false
};
public bool Run()
{
tf.compat.v1.disable_eager_execution();
// tf Graph Input
var xtr = tf.placeholder(tf.float32, (-1, 784));
var xte = tf.placeholder(tf.float32, 784);
// Nearest Neighbor calculation using L1 Distance
// Calculate L1 Distance
var distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))), reduction_indices: 1);
// Prediction: Get min distance index (Nearest neighbor)
var pred = tf.arg_min(distance, 0);
float accuracy = 0f;
// Initialize the variables (i.e. assign their default value)
var init = tf.global_variables_initializer();
using (var sess = tf.Session())
{
// Run the initializer
sess.run(init);
PrepareData();
foreach (int i in range((int)Xte.shape[0]))
{
// Get nearest neighbor
long nn_index = sess.run(pred, (xtr, Xtr), (xte, Xte[i]));
// Get nearest neighbor class label and compare it to its true label
int index = (int)nn_index;
if (i % 10 == 0 || i == 0)
print($"Test {i} Prediction: {np.argmax(Ytr[index])} True Class: {np.argmax(Yte[i])}");
// Calculate accuracy
if (np.argmax(Ytr[index]) == np.argmax(Yte[i]))
accuracy += 1f / Xte.shape[0];
}
print($"Accuracy: {accuracy}");
}
return accuracy > 0.8;
}
public override void PrepareData()
{
var loader = new MnistModelLoader();
mnist = loader.LoadAsync(".resources/mnist", oneHot: true, trainSize: TrainSize, validationSize: ValidationSize, testSize: TestSize, showProgressInConsole: true).Result;
// In this example, we limit mnist data
(Xtr, Ytr) = mnist.Train.GetNextBatch(TrainSize == null ? 5000 : TrainSize.Value / 100); // 5000 for training (nn candidates)
(Xte, Yte) = mnist.Test.GetNextBatch(TestSize == null ? 200 : TestSize.Value / 100); // 200 for testing
}
}
}