-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
54 lines (45 loc) · 1.75 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import gradio as gr
import dotenv
from transformers import pipeline
from langchain import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
import requests
import os
dotenv.load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
# image to text
def imgToText(url):
img_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
text = img_to_text(url)[0]['generated_text']
return text
# LLM
def generate_story(scenario):
template = """
You are a story teller.
You can generate a short story based on a simple narrative, the story should be no more than 40 words:
CONTEXT: {scenario}
STORY:
"""
prompt = PromptTemplate(template=template, input_variables=["scenario"])
story_llm = LLMChain(llm=OpenAI(model_name="gpt-3.5-turbo"), prompt=prompt, verbose=True)
story = story_llm.predict(scenario=scenario)
return story
def textToSpeech(story):
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
headers = {"Authorization": "Bearer " + HUGGINGFACEHUB_API_TOKEN}
payload = {"inputs": story}
response = requests.post(API_URL, headers=headers, json=payload)
with open("story.flac", "wb") as f:
f.write(response.content)
def generate_story_and_play_audio(image):
scenario = imgToText(image.name)
story = generate_story(scenario)
textToSpeech(story)
return "story.flac"
iface = gr.Interface(
fn=generate_story_and_play_audio,
inputs=gr.inputs.File(label="Upload an image"),
outputs=gr.outputs.Audio(label="Generated Story", type="filepath")
)
iface.launch()