-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
460 lines (392 loc) · 19.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import numpy as np
from PIL import Image, ImageFilter
import torch
import torch.nn.functional as F
from torchvision.transforms import GaussianBlur
import math
if (not hasattr(Image, 'Resampling')): # For older versions of Pillow
Image.Resampling = Image
BLUR_KERNEL_SIZE = 15
def tensor_to_pil(img_tensor, batch_index=0):
# Takes an image in a batch in the form of a tensor of shape [batch_size, channels, height, width]
# and returns an PIL Image with the corresponding mode deduced by the number of channels
# Take the image in the batch given by batch_index
img_tensor = img_tensor[batch_index].unsqueeze(0)
i = 255. * img_tensor.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8).squeeze())
return img
def pil_to_tensor(image):
# Takes a PIL image and returns a tensor of shape [1, height, width, channels]
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image).unsqueeze(0)
if len(image.shape) == 3: # If the image is grayscale, add a channel dimension
image = image.unsqueeze(-1)
return image
def controlnet_hint_to_pil(tensor, batch_index=0):
return tensor_to_pil(tensor.movedim(1, -1), batch_index)
def pil_to_controlnet_hint(img):
return pil_to_tensor(img).movedim(-1, 1)
def crop_tensor(tensor, region):
# Takes a tensor of shape [batch_size, height, width, channels] and crops it to the given region
x1, y1, x2, y2 = region
return tensor[:, y1:y2, x1:x2, :]
def resize_tensor(tensor, size, mode="nearest-exact"):
# Takes a tensor of shape [B, C, H, W] and resizes
# it to a shape of [B, C, size[0], size[1]] using the given mode
return torch.nn.functional.interpolate(tensor, size=size, mode=mode)
def get_crop_region(mask, pad=0):
# Takes a black and white PIL image in 'L' mode and returns the coordinates of the white rectangular mask region
# Should be equivalent to the get_crop_region function from https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/master/modules/masking.py
coordinates = mask.getbbox()
if coordinates is not None:
x1, y1, x2, y2 = coordinates
else:
x1, y1, x2, y2 = mask.width, mask.height, 0, 0
# Apply padding
x1 = max(x1 - pad, 0)
y1 = max(y1 - pad, 0)
x2 = min(x2 + pad, mask.width)
y2 = min(y2 + pad, mask.height)
return fix_crop_region((x1, y1, x2, y2), (mask.width, mask.height))
def fix_crop_region(region, image_size):
# Remove the extra pixel added by the get_crop_region function
image_width, image_height = image_size
x1, y1, x2, y2 = region
if x2 < image_width:
x2 -= 1
if y2 < image_height:
y2 -= 1
return x1, y1, x2, y2
def expand_crop(region, width, height, target_width, target_height):
'''
Expands a crop region to a specified target size.
:param region: A tuple of the form (x1, y1, x2, y2) denoting the upper left and the lower right points
of the rectangular region. Expected to have x2 > x1 and y2 > y1.
:param width: The width of the image the crop region is from.
:param height: The height of the image the crop region is from.
:param target_width: The desired width of the crop region.
:param target_height: The desired height of the crop region.
'''
x1, y1, x2, y2 = region
actual_width = x2 - x1
actual_height = y2 - y1
# target_width = math.ceil(actual_width / 8) * 8
# target_height = math.ceil(actual_height / 8) * 8
# Try to expand region to the right of half the difference
width_diff = target_width - actual_width
x2 = min(x2 + width_diff // 2, width)
# Expand region to the left of the difference including the pixels that could not be expanded to the right
width_diff = target_width - (x2 - x1)
x1 = max(x1 - width_diff, 0)
# Try the right again
width_diff = target_width - (x2 - x1)
x2 = min(x2 + width_diff, width)
# Try to expand region to the bottom of half the difference
height_diff = target_height - actual_height
y2 = min(y2 + height_diff // 2, height)
# Expand region to the top of the difference including the pixels that could not be expanded to the bottom
height_diff = target_height - (y2 - y1)
y1 = max(y1 - height_diff, 0)
# Try the bottom again
height_diff = target_height - (y2 - y1)
y2 = min(y2 + height_diff, height)
return (x1, y1, x2, y2), (target_width, target_height)
def resize_region(region, init_size, resize_size):
# Resize a crop so that it fits an image that was resized to the given width and height
x1, y1, x2, y2 = region
init_width, init_height = init_size
resize_width, resize_height = resize_size
x1 = math.floor(x1 * resize_width / init_width)
x2 = math.ceil(x2 * resize_width / init_width)
y1 = math.floor(y1 * resize_height / init_height)
y2 = math.ceil(y2 * resize_height / init_height)
return (x1, y1, x2, y2)
def pad_image(image, left_pad, right_pad, top_pad, bottom_pad, fill=False, blur=False):
'''
Pads an image with the given number of pixels on each side and fills the padding with data from the edges.
:param image: A PIL image
:param left_pad: The number of pixels to pad on the left side
:param right_pad: The number of pixels to pad on the right side
:param top_pad: The number of pixels to pad on the top side
:param bottom_pad: The number of pixels to pad on the bottom side
:param blur: Whether to blur the padded edges
:return: A PIL image with size (image.width + left_pad + right_pad, image.height + top_pad + bottom_pad)
'''
left_edge = image.crop((0, 1, 1, image.height - 1))
right_edge = image.crop((image.width - 1, 1, image.width, image.height - 1))
top_edge = image.crop((1, 0, image.width - 1, 1))
bottom_edge = image.crop((1, image.height - 1, image.width - 1, image.height))
new_width = image.width + left_pad + right_pad
new_height = image.height + top_pad + bottom_pad
padded_image = Image.new(image.mode, (new_width, new_height))
padded_image.paste(image, (left_pad, top_pad))
if fill:
for i in range(left_pad):
edge = left_edge.resize(
(1, new_height - i * (top_pad + bottom_pad) // left_pad), resample=Image.Resampling.NEAREST)
padded_image.paste(edge, (i, i * top_pad // left_pad))
for i in range(right_pad):
edge = right_edge.resize(
(1, new_height - i * (top_pad + bottom_pad) // right_pad), resample=Image.Resampling.NEAREST)
padded_image.paste(edge, (new_width - 1 - i, i * top_pad // right_pad))
for i in range(top_pad):
edge = top_edge.resize(
(new_width - i * (left_pad + right_pad) // top_pad, 1), resample=Image.Resampling.NEAREST)
padded_image.paste(edge, (i * left_pad // top_pad, i))
for i in range(bottom_pad):
edge = bottom_edge.resize(
(new_width - i * (left_pad + right_pad) // bottom_pad, 1), resample=Image.Resampling.NEAREST)
padded_image.paste(edge, (i * left_pad // bottom_pad, new_height - 1 - i))
if blur and not (left_pad == right_pad == top_pad == bottom_pad == 0):
padded_image = padded_image.filter(ImageFilter.GaussianBlur(BLUR_KERNEL_SIZE))
padded_image.paste(image, (left_pad, top_pad))
return padded_image
def pad_image2(image, left_pad, right_pad, top_pad, bottom_pad, fill=False, blur=False):
'''
Pads an image with the given number of pixels on each side and fills the padding with data from the edges.
Faster than pad_image, but only pads with edge data in straight lines.
:param image: A PIL image
:param left_pad: The number of pixels to pad on the left side
:param right_pad: The number of pixels to pad on the right side
:param top_pad: The number of pixels to pad on the top side
:param bottom_pad: The number of pixels to pad on the bottom side
:param blur: Whether to blur the padded edges
:return: A PIL image with size (image.width + left_pad + right_pad, image.height + top_pad + bottom_pad)
'''
left_edge = image.crop((0, 1, 1, image.height - 1))
right_edge = image.crop((image.width - 1, 1, image.width, image.height - 1))
top_edge = image.crop((1, 0, image.width - 1, 1))
bottom_edge = image.crop((1, image.height - 1, image.width - 1, image.height))
new_width = image.width + left_pad + right_pad
new_height = image.height + top_pad + bottom_pad
padded_image = Image.new(image.mode, (new_width, new_height))
padded_image.paste(image, (left_pad, top_pad))
if fill:
if left_pad > 0:
padded_image.paste(left_edge.resize((left_pad, new_height), resample=Image.Resampling.NEAREST), (0, 0))
if right_pad > 0:
padded_image.paste(right_edge.resize((right_pad, new_height),
resample=Image.Resampling.NEAREST), (new_width - right_pad, 0))
if top_pad > 0:
padded_image.paste(top_edge.resize((new_width, top_pad), resample=Image.Resampling.NEAREST), (0, 0))
if bottom_pad > 0:
padded_image.paste(bottom_edge.resize((new_width, bottom_pad),
resample=Image.Resampling.NEAREST), (0, new_height - bottom_pad))
if blur and not (left_pad == right_pad == top_pad == bottom_pad == 0):
padded_image = padded_image.filter(ImageFilter.GaussianBlur(BLUR_KERNEL_SIZE))
padded_image.paste(image, (left_pad, top_pad))
return padded_image
def pad_tensor(tensor, left_pad, right_pad, top_pad, bottom_pad, fill=False, blur=False):
'''
Pads an image tensor with the given number of pixels on each side and fills the padding with data from the edges.
:param tensor: A tensor of shape [B, H, W, C]
:param left_pad: The number of pixels to pad on the left side
:param right_pad: The number of pixels to pad on the right side
:param top_pad: The number of pixels to pad on the top side
:param bottom_pad: The number of pixels to pad on the bottom side
:param blur: Whether to blur the padded edges
:return: A tensor of shape [B, H + top_pad + bottom_pad, W + left_pad + right_pad, C]
'''
batch_size, channels, height, width = tensor.shape
h_pad = left_pad + right_pad
v_pad = top_pad + bottom_pad
new_width = width + h_pad
new_height = height + v_pad
# Create empty image
padded = torch.zeros((batch_size, channels, new_height, new_width), dtype=tensor.dtype)
# Copy the original image into the centor of the padded tensor
padded[:, :, top_pad:top_pad + height, left_pad:left_pad + width] = tensor
# Duplicate the edges of the original image into the padding
if top_pad > 0:
padded[:, :, :top_pad, :] = padded[:, :, top_pad:top_pad + 1, :] # Top edge
if bottom_pad > 0:
padded[:, :, -bottom_pad:, :] = padded[:, :, -bottom_pad - 1:-bottom_pad, :] # Bottom edge
if left_pad > 0:
padded[:, :, :, :left_pad] = padded[:, :, :, left_pad:left_pad + 1] # Left edge
if right_pad > 0:
padded[:, :, :, -right_pad:] = padded[:, :, :, -right_pad - 1:-right_pad] # Right edge
return padded
def resize_and_pad_image(image, width, height, fill=False, blur=False):
'''
Resizes an image to the given width and height and pads it to the given width and height.
:param image: A PIL image
:param width: The width of the resized image
:param height: The height of the resized image
:param fill: Whether to fill the padding with data from the edges
:param blur: Whether to blur the padded edges
:return: A PIL image of size (width, height)
'''
width_ratio = width / image.width
height_ratio = height / image.height
if height_ratio > width_ratio:
resize_ratio = width_ratio
else:
resize_ratio = height_ratio
resize_width = round(image.width * resize_ratio)
resize_height = round(image.height * resize_ratio)
resized = image.resize((resize_width, resize_height), resample=Image.Resampling.LANCZOS)
# Pad the sides of the image to get the image to the desired size that wasn't covered by the resize
horizontal_pad = (width - resize_width) // 2
vertical_pad = (height - resize_height) // 2
result = pad_image2(resized, horizontal_pad, horizontal_pad, vertical_pad, vertical_pad, fill, blur)
result = result.resize((width, height), resample=Image.Resampling.LANCZOS)
return result, (horizontal_pad, vertical_pad)
def resize_and_pad_tensor(tensor, width, height, fill=False, blur=False):
'''
Resizes an image tensor to the given width and height and pads it to the given width and height.
:param tensor: A tensor of shape [B, H, W, C]
:param width: The width of the resized image
:param height: The height of the resized image
:param fill: Whether to fill the padding with data from the edges
:param blur: Whether to blur the padded edges
:return: A tensor of shape [B, height, width, C]
'''
# Resize the image to the closest size that maintains the aspect ratio
width_ratio = width / tensor.shape[3]
height_ratio = height / tensor.shape[2]
if height_ratio > width_ratio:
resize_ratio = width_ratio
else:
resize_ratio = height_ratio
resize_width = round(tensor.shape[3] * resize_ratio)
resize_height = round(tensor.shape[2] * resize_ratio)
resized = F.interpolate(tensor, size=(resize_height, resize_width), mode='nearest-exact')
# Pad the sides of the image to get the image to the desired size that wasn't covered by the resize
horizontal_pad = (width - resize_width) // 2
vertical_pad = (height - resize_height) // 2
result = pad_tensor(resized, horizontal_pad, horizontal_pad, vertical_pad, vertical_pad, fill, blur)
result = F.interpolate(result, size=(height, width), mode='nearest-exact')
return result
def crop_controlnet(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad):
if "control" not in cond_dict:
return
c = cond_dict["control"]
controlnet = c.copy()
cond_dict["control"] = controlnet
while c is not None:
# hint is shape (B, C, H, W)
hint = controlnet.cond_hint_original
resized_crop = resize_region(region, canvas_size, hint.shape[:-3:-1])
hint = crop_tensor(hint.movedim(1, -1), resized_crop).movedim(-1, 1)
hint = resize_tensor(hint, tile_size[::-1])
controlnet.cond_hint_original = hint
c = c.previous_controlnet
controlnet.set_previous_controlnet(c.copy() if c is not None else None)
controlnet = controlnet.previous_controlnet
def region_intersection(region1, region2):
"""
Returns the coordinates of the intersection of two rectangular regions.
:param region1: A tuple of the form (x1, y1, x2, y2) denoting the upper left and the lower right points
of the first rectangular region. Expected to have x2 > x1 and y2 > y1.
:param region2: The second rectangular region with the same format as the first.
:return: A tuple of the form (x1, y1, x2, y2) denoting the rectangular intersection.
None if there is no intersection.
"""
x1, y1, x2, y2 = region1
x1_, y1_, x2_, y2_ = region2
x1 = max(x1, x1_)
y1 = max(y1, y1_)
x2 = min(x2, x2_)
y2 = min(y2, y2_)
if x1 >= x2 or y1 >= y2:
return None
return (x1, y1, x2, y2)
def crop_gligen(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad):
if "gligen" not in cond_dict:
return
type, model, cond = cond_dict["gligen"]
if type != "position":
from warnings import warn
warn(f"Unknown gligen type {type}")
return
cropped = []
for c in cond:
emb, h, w, y, x = c
# Get the coordinates of the box in the upscaled image
x1 = x * 8
y1 = y * 8
x2 = x1 + w * 8
y2 = y1 + h * 8
gligen_upscaled_box = resize_region((x1, y1, x2, y2), init_size, canvas_size)
# Calculate the intersection of the gligen box and the region
intersection = region_intersection(gligen_upscaled_box, region)
if intersection is None:
continue
x1, y1, x2, y2 = intersection
# Offset the gligen box so that the origin is at the top left of the tile region
x1 -= region[0]
y1 -= region[1]
x2 -= region[0]
y2 -= region[1]
# Add the padding
x1 += w_pad
y1 += h_pad
x2 += w_pad
y2 += h_pad
# Set the new position params
h = (y2 - y1) // 8
w = (x2 - x1) // 8
x = x1 // 8
y = y1 // 8
cropped.append((emb, h, w, y, x))
cond_dict["gligen"] = (type, model, cropped)
def crop_area(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad):
if "area" not in cond_dict:
return
# Resize the area conditioning to the canvas size and confine it to the tile region
h, w, y, x = cond_dict["area"]
w, h, x, y = 8 * w, 8 * h, 8 * x, 8 * y
x1, y1, x2, y2 = resize_region((x, y, x + w, y + h), init_size, canvas_size)
intersection = region_intersection((x1, y1, x2, y2), region)
if intersection is None:
del cond_dict["area"]
del cond_dict["strength"]
return
x1, y1, x2, y2 = intersection
# Offset origin to the top left of the tile
x1 -= region[0]
y1 -= region[1]
x2 -= region[0]
y2 -= region[1]
# Add the padding
x1 += w_pad
y1 += h_pad
x2 += w_pad
y2 += h_pad
# Set the params for tile
w, h = (x2 - x1) // 8, (y2 - y1) // 8
x, y = x1 // 8, y1 // 8
cond_dict["area"] = (h, w, y, x)
def crop_mask(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad):
if "mask" not in cond_dict:
return
mask_tensor = cond_dict["mask"] # (B, H, W)
masks = []
for i in range(mask_tensor.shape[0]):
# Convert to PIL image
mask = tensor_to_pil(mask_tensor, i) # W x H
# Resize the mask to the canvas size
mask = mask.resize(canvas_size, Image.Resampling.BICUBIC)
# Crop the mask to the region
mask = mask.crop(region)
# Add padding
mask, _ = resize_and_pad_image(mask, tile_size[0], tile_size[1], fill=True)
# Resize the mask to the tile size
if tile_size != mask.size:
mask = mask.resize(tile_size, Image.Resampling.BICUBIC)
# Convert back to tensor
mask = pil_to_tensor(mask) # (1, H, W, 1)
mask = mask.squeeze(-1) # (1, H, W)
masks.append(mask)
cond_dict["mask"] = torch.cat(masks, dim=0) # (B, H, W)
def crop_cond(cond, region, init_size, canvas_size, tile_size, w_pad=0, h_pad=0):
cropped = []
for emb, x in cond:
cond_dict = x.copy()
n = [emb, cond_dict]
crop_controlnet(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad)
crop_gligen(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad)
crop_area(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad)
crop_mask(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad)
cropped.append(n)
return cropped