-
Notifications
You must be signed in to change notification settings - Fork 111
/
train.py
150 lines (132 loc) · 4.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) 2024, Salesforce, Inc.
# SPDX-License-Identifier: Apache-2
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Callable, Optional
import hydra
import lightning as L
import torch
from hydra.utils import instantiate
from omegaconf import DictConfig
from torch.utils._pytree import tree_map
from torch.utils.data import Dataset, DistributedSampler
from uni2ts.common import hydra_util # noqa: hydra resolvers
from uni2ts.data.loader import DataLoader
class DataModule(L.LightningDataModule):
def __init__(
self,
cfg: DictConfig,
train_dataset: Dataset,
val_dataset: Optional[Dataset | list[Dataset]],
):
super().__init__()
self.cfg = cfg
self.train_dataset = train_dataset
if val_dataset is not None:
self.val_dataset = val_dataset
self.val_dataloader = self._val_dataloader
@staticmethod
def get_dataloader(
dataset: Dataset,
dataloader_func: Callable[..., DataLoader],
shuffle: bool,
world_size: int,
batch_size: int,
num_batches_per_epoch: Optional[int] = None,
) -> DataLoader:
sampler = (
DistributedSampler(
dataset,
num_replicas=None,
rank=None,
shuffle=shuffle,
seed=0,
drop_last=False,
)
if world_size > 1
else None
)
return dataloader_func(
dataset=dataset,
shuffle=shuffle if sampler is None else None,
sampler=sampler,
batch_size=batch_size,
num_batches_per_epoch=num_batches_per_epoch,
)
def train_dataloader(self) -> DataLoader:
return self.get_dataloader(
self.train_dataset,
instantiate(self.cfg.train_dataloader, _partial_=True),
self.cfg.train_dataloader.shuffle,
self.trainer.world_size,
self.train_batch_size,
num_batches_per_epoch=self.train_num_batches_per_epoch,
)
def _val_dataloader(self) -> DataLoader | list[DataLoader]:
return tree_map(
partial(
self.get_dataloader,
dataloader_func=instantiate(self.cfg.val_dataloader, _partial_=True),
shuffle=self.cfg.val_dataloader.shuffle,
world_size=self.trainer.world_size,
batch_size=self.val_batch_size,
num_batches_per_epoch=None,
),
self.val_dataset,
)
@property
def train_batch_size(self) -> int:
return self.cfg.train_dataloader.batch_size // (
self.trainer.world_size * self.trainer.accumulate_grad_batches
)
@property
def val_batch_size(self) -> int:
return self.cfg.val_dataloader.batch_size // (
self.trainer.world_size * self.trainer.accumulate_grad_batches
)
@property
def train_num_batches_per_epoch(self) -> int:
return (
self.cfg.train_dataloader.num_batches_per_epoch
* self.trainer.accumulate_grad_batches
)
@hydra.main(version_base="1.3", config_name="default.yaml")
def main(cfg: DictConfig):
if cfg.tf32:
assert cfg.trainer.precision == 32
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
model: L.LightningModule = instantiate(cfg.model, _convert_="all")
if cfg.compile:
model.module.compile(mode=cfg.compile)
trainer: L.Trainer = instantiate(cfg.trainer)
train_dataset: Dataset = instantiate(cfg.data).load_dataset(
model.train_transform_map
)
val_dataset: Optional[Dataset | list[Dataset]] = (
tree_map(
lambda ds: ds.load_dataset(model.val_transform_map),
instantiate(cfg.val_data, _convert_="all"),
)
if "val_data" in cfg
else None
)
L.seed_everything(cfg.seed + trainer.logger.version, workers=True)
trainer.fit(
model,
datamodule=DataModule(cfg, train_dataset, val_dataset),
ckpt_path=cfg.ckpt_path,
)
if __name__ == "__main__":
main()