diff --git a/src/safeds/data/tabular/transformation/_label_encoder.py b/src/safeds/data/tabular/transformation/_label_encoder.py index e2004c15f..2dd4fe6db 100644 --- a/src/safeds/data/tabular/transformation/_label_encoder.py +++ b/src/safeds/data/tabular/transformation/_label_encoder.py @@ -1,8 +1,5 @@ from __future__ import annotations -import warnings -from typing import Any - from sklearn.preprocessing import OrdinalEncoder as sk_OrdinalEncoder from safeds.data.tabular.containers import Table @@ -12,13 +9,6 @@ ) -def warn(*_: Any, **__: Any) -> None: - pass - - -warnings.warn = warn - - # noinspection PyProtectedMember class LabelEncoder(InvertibleTableTransformer): """The LabelEncoder encodes one or more given columns into labels.""" diff --git a/src/safeds/ml/classical/_util_sklearn.py b/src/safeds/ml/classical/_util_sklearn.py index d5a987f48..145ee06f5 100644 --- a/src/safeds/ml/classical/_util_sklearn.py +++ b/src/safeds/ml/classical/_util_sklearn.py @@ -1,3 +1,4 @@ +import warnings from typing import Any from safeds.data.tabular.containers import Table, TaggedTable @@ -84,7 +85,9 @@ def predict(model: Any, dataset: Table, feature_names: list[str] | None, target_ result_set.columns = dataset.column_names try: - predicted_target_vector = model.predict(dataset_df.values) + with warnings.catch_warnings(): + warnings.filterwarnings("ignore", message="X does not have valid feature names") + predicted_target_vector = model.predict(dataset_df.values) result_set[target_name] = predicted_target_vector return Table(result_set).tag_columns(target_name=target_name, feature_names=feature_names) except ValueError as exception: