-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtwitterapiaccount.py
396 lines (278 loc) · 10.7 KB
/
twitterapiaccount.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# -*- coding: utf-8 -*-
"""twitterapiaccount.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1q7pmP3GtNueW7iA4mVutlMdT7BcFZKJR
"""
from google.colab import drive
drive.mount('/content/drive')
!pip install better_profanity
import nltk
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('omw-1.4')
RAW_INPUT_TRAINING_DATA = "/content/drive/MyDrive/twitterapiaccount/dataset_combined_2510_new.csv"
USER_TWEET_DATA_FILE = "user_tweets.csv"
PREPROCESSED_INPUT_TRAINING_DATA = "preprocessed_input_data.csv"
MODEL_FILE = "model.pkl"
VECTORIZER_FILE = "vectorizer.pkl"
# Commented out IPython magic to ensure Python compatibility.
#DATA CLEANING: Vectorizer AND NLP
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# %matplotlib inline
import re
from sklearn.feature_extraction.text import TfidfVectorizer
#importing nlp packages
from nltk import stem
from nltk.corpus import stopwords
stemmer = stem.SnowballStemmer('english')
stopwords = set(stopwords.words('english'))
#removing the special characters and numbers and url
def keep_alpha(s):
# s = row['content']
non_url = re.sub(r"http\S+", "", s)
res = re.sub('[^a-zA-Z\s]', '', non_url)
res1 = re.sub('\n', '', res)
return res1
def nlp_preprocessing(msg):
try:
# converting messages to lowercase
msg = msg.lower()
# removing stopwords
msg = [word for word in msg.split() if word not in stopwords]
# using a stemmer (getting root form of each word of each row)
msg = " ".join([stemmer.stem(word) for word in msg])
except Exception as e:
print(e)
return msg
df=pd.read_csv(RAW_INPUT_TRAINING_DATA)
df.rename(columns = {'Text':'tweet'}, inplace = True)
df = df.dropna()
df = df.sample(frac=1).reset_index()
#df = df.sample(frac=0.1).reset_index()
# data preprocessing using NLP : nltk
df['tweet'] = df['tweet'].astype(str)
#remove leading and ending whitespaces
df['tweet'] = df['tweet'].str.strip()
# keep only alphabets
df['tweet'] = df['tweet'].apply(keep_alpha)
# nlp preprocessing to remove stopwords and get base/stem form of each word
df['tweet'] = df['tweet'].apply(nlp_preprocessing)
print(df.head(2))
print(df.tail(2))
print(df['depressed'].value_counts())
# df.to_csv("data//preprocessed_input_data.csv", index=False)
df.to_csv(PREPROCESSED_INPUT_TRAINING_DATA, index=False)
import pandas as pd
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import plot_confusion_matrix
# to save or to load model
import joblib
svmout=0
lrout=0
dtout=0
## SVM
def train_svm(X_train, X_test, y_train, y_test):
from sklearn import svm
svm = svm.SVC(C=1000)
# training svm model
svm.fit(X_train, y_train)
print("\n\n----SVM------")
y_pred = svm.predict(X_test)
print("Confusion matrix SVM:\n", confusion_matrix(y_test, y_pred))
plot_confusion_matrix(svm, X_test, y_test)
plt.show()
svmout=round((accuracy_score(y_test, y_pred) * 100),2)
# calculate the accuracy
print("Accuracy score for SVM: ", round((accuracy_score(y_test, y_pred) * 100),2))
return svm, svmout
## Logistic regression
def train_logistic_regression(X_train, X_test, y_train, y_test):
from sklearn.linear_model import LogisticRegression
# Create an instance of the model.
logreg = LogisticRegression()
# Training the model.
logreg.fit(X_train,y_train)
#Do prediction.
y_pred=logreg.predict(X_test)
print("\n\n-----------Logistic Regression-----")
print("Confusion matrix Logistic Regression:\n",confusion_matrix(y_test, y_pred))
plot_confusion_matrix(logreg, X_test, y_test)
plt.show()
lrout=round((accuracy_score(y_test, y_pred) * 100),2)
# calculate the accuracy
print("Accuracy score for Logistic regression: ", round((accuracy_score(y_test, y_pred) * 100),2))
return logreg, lrout
## Decision Tree
def train_decision_tree(X_train, X_test, y_train, y_test):
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print("\n\n--------Decision Tree------------")
print("Confusion matrix Decision Tree:\n",confusion_matrix(y_test, y_pred))
plot_confusion_matrix(model, X_test, y_test)
plt.show()
dtout= round((accuracy_score(y_test, y_pred) * 100),2)
print("Accuracy score for Decision Tree: ", round((accuracy_score(y_test, y_pred) * 100),2))
return model, dtout
# training ML Model
# df = pd.read_csv("data//preprocessed_input_data.csv")
df = pd.read_csv(PREPROCESSED_INPUT_TRAINING_DATA)
df = df.dropna()
print(df.head())
# training the vectorizer (conveet text data to number data)
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(df['tweet'].values )
y = df['depressed'].values
#save vectorizer object to vectorize user tweets later
# joblib.dump(vectorizer, 'vectorizer.pkl')
joblib.dump(vectorizer, VECTORIZER_FILE)
# train test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
# checking accruacy of SVM
svm_model, svmout = train_svm(X_train, X_test, y_train, y_test)
# checking accuracy of Logistic Regression
lr_model, lrout = train_logistic_regression(X_train, X_test, y_train, y_test)
# checking accuracy of Decision Tree Algorithm
dt_model, dtout = train_decision_tree(X_train, X_test, y_train, y_test)
#PLOTING
# data = {'SVM':svmout, 'Logistic Regression':lrout, 'Decision Tree':dtout}
# courses = list(data.keys())
# values = list(data.values())
# fig = plt.figure(figsize = (10, 5))
# # creating the bar plot
# plt.bar(courses, values, color ='maroon',
# width = 0.4)
# plt.xlabel("Tweet")
# plt.ylabel("No. of tweets")
# plt.title("Depression Analysis")
# plt.show()
x = ['SVM', 'Logistic Regression', 'Decision Tree']
y = [svmout, lrout, dtout]
color = ['red', 'blue', 'green']
bars = plt.bar(x, height=y, color=color, width=.5)
xlocs, xlabs = plt.xticks()
# reference x so you don't need to change the range each time x changes
xlocs=[i for i in x]
xlabs=[i for i in x]
plt.xlabel('Model')
plt.ylabel('Accuracy %')
plt.xticks(xlocs, xlabs)
plt.title("Depression Analysis")
print("\n\n")
for bar in bars:
yval = bar.get_height()
plt.text(bar.get_x(), yval + .5, yval)
plt.figure(figsize=(15, 15))
plt.show()
print("\n\n")
# choose SVM Regression based on high accuracy score
model, accuracy_final = train_svm(X_train, X_test, y_train, y_test)
# Save the model as a pickle in a file at given location "model.pkl"
#joblib.dump(model, 'model.pkl')
joblib.dump(model, MODEL_FILE)
# Load/Read the model from the file at given location "model.pkl"
# classification_model = joblib.load('model.pkl')
classification_model = joblib.load(MODEL_FILE)
# predicting the model on test data
y_pred=classification_model.predict(X_test)
# calculate the accuracy
print("\n\n Model accuracy: ", round((accuracy_score(y_test, y_pred) * 100), 2))
print("\n\n", confusion_matrix(y_test, y_pred))
#PREDICT TWEETS
# twitter dataset scraping based on keyword
import re
import numpy as np
import tweepy
from tweepy import OAuthHandler
from textblob import TextBlob
import pandas as pd
from wordcloud import WordCloud
from better_profanity import profanity
import configparser
import joblib
def download_user_tweets():
# set twitter credentials
#insert your API key details
api_key = 'api----key----here'
api_key_secret = 'api------key-------secret--here'
access_token = 'access----token-------here'
access_token_secret = 'access----------token-----secret----here'
# Access Twitter Data (login to twitter via api)
auth = tweepy.OAuthHandler(api_key, api_key_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)
# read configs
# config = configparser.ConfigParser()
# config.read('config.ini')
# consumer_key = config['twitter']['api_key']
# consumer_secret = config['twitter']['api_key_secret']
# access_token = config['twitter']['access_token']
# access_token_secret = config['twitter']['access_token_secret']
# authentication
# auth = tweepy.OAuthHandler(api_key, api_key_secret)
# auth.set_access_token(access_token, access_token_secret)
# api = tweepy.API(auth)
# user tweets
user = input("Enter Twitter username:").strip()
if len(user)<=1:
user = 'elonmusk'
limit=50
tweets = tweepy.Cursor(api.user_timeline, screen_name=user, count=200, tweet_mode='extended').items(limit)
# tweets = api.user_timeline(screen_name=user, count=limit, tweet_mode='extended')
# create DataFrame
columns = ['User', 'tweet']
data = []
for tweet in tweets:
data.append([tweet.user.screen_name, tweet.full_text])
df = pd.DataFrame(data, columns=columns)
# print(df.head())
# print("\n\n")
# save user tweets to csv
# print("LOGGER: saving user tweets to : ", USER_TWEET_DATA_FILE)
df.to_csv(USER_TWEET_DATA_FILE, index=False)
return df
def predict_user_tweets(df):
# user tweet preprocessing using NLP : nltk
df['tweet'] = df['tweet'].astype(str)
#remove leading and ending whitespaces
df['tweet'] = df['tweet'].str.strip()
# keep only alphabets
df['tweet'] = df['tweet'].apply(keep_alpha)
# nlp preprocessing to remove stopwords and get base/stem form of each word
df['tweet'] = df['tweet'].apply(nlp_preprocessing)
df['tweet'] = df['tweet'].str.strip()
# replace empty rows with NAN and then drop them
df['tweet'].replace('', np.nan, inplace=True)
df = df.dropna()
df = df.reset_index(drop=True)
vectorizer = joblib.load(VECTORIZER_FILE)
X_test = vectorizer.transform(df['tweet'].values )
# Load/Read the model from the file at given location "model.pkl"
# classification_model = joblib.load('model.pkl')
classification_model = joblib.load(MODEL_FILE)
# predicting the model on user test data
y_pred=classification_model.predict(X_test)
# print(y_pred)
df['prediction'] = y_pred
print(df[['tweet', 'prediction']])
return list(y_pred)
def final_output(predictions):
total = len(predictions)
depressed_count = predictions.count("YES")
print("\n\n")
if depressed_count > (total*.6):
print("Result: DEPRESSED 😒")
else:
print("Result: NOT DEPRESSED 😊")
user_tweets = download_user_tweets()
predictions = predict_user_tweets(user_tweets)
final_output(predictions)