Tiny Yolo v2 is a real-time object detection model targeted for real-time processing implemented in Tensorflow.
The model is quantized in int8 format using tensorflow lite converter.
Network information | Value |
---|---|
Framework | TensorFlow Lite |
Quantization | int8 |
Provenance | https://github.com/AlexeyAB/darknet |
Paper | https://pjreddie.com/media/files/papers/YOLO9000.pdf |
The models are quantized using tensorflow lite converter.
For an image resolution of NxM and NC classes
Input Shape | Description |
---|---|
(1, W, H, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
Output Shape | Description |
---|---|
(1, WxH, NAx(5+NC)) | FLOAT values Where WXH is the resolution of the output grid cell, NA is the number of anchors and NC is the number of classes |
Platform | Supported | Recommended |
---|---|---|
STM32L0 | [] | [] |
STM32L4 | [] | [] |
STM32U5 | [] | [] |
STM32H7 | [x] | [] |
STM32MP1 | [x] | [x] |
STM32MP2 | [x] | [x] |
STM32N6 | [x] | [x] |
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
---|---|---|---|---|---|---|---|---|---|
tiny_yolo_v2 | COCO-Person | Int8 | 224x224x3 | STM32N6 | 392 | 0.0 | 10804.81 | 10.0.0 | 2.0.0 |
tiny_yolo_v2 | ST-Person | Int8 | 224x224x3 | STM32N6 | 392 | 0.0 | 10804.81 | 10.0.0 | 2.0.0 |
tiny_yolo_v2 | COCO-Person | Int8 | 416x416x3 | STM32N6 | 1880.12 | 0.0 | 10829 | 10.0.0 | 2.0.0 |
Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
---|---|---|---|---|---|---|---|---|---|
tiny_yolo_v2 | COCO-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 30.67 | 32.61 | 10.0.0 | 2.0.0 |
tiny_yolo_v2 | ST-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 30.67 | 32.61 | 10.0.0 | 2.0.0 |
tiny_yolo_v2 | COCO-Person | Int8 | 416x416x3 | STM32N6570-DK | NPU/MCU | 50.91 | 19.64 | 10.0.0 | 2.0.0 |
Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
---|---|---|---|---|---|---|---|---|---|---|
tiny_yolo_v2 | Int8 | 192x192x3 | STM32H7 | 220.6 KiB | 7.98 KiB | 10775.98 KiB | 55.85 KiB | 228.58 KiB | 10831.83 KiB | 10.0.0 |
tiny_yolo_v2 | Int8 | 224x224x3 | STM32H7 | 249.35 KiB | 7.98 KiB | 10775.98 KiB | 55.8 KiB | 257.33 KiB | 10831.78 KiB | 10.0.0 |
tiny_yolo_v2 | Int8 | 416x416x3 | STM32H7 | 1263.07 KiB | 8.03 KiB | 10775.98 KiB | 55.85 KiB | 1271.1 KiB | 10831.83 KiB | 10.0.0 |
Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
---|---|---|---|---|---|---|---|
tiny_yolo_v2 | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 3006.3 ms | 10.0.0 |
tiny_yolo_v2 | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 2742.3 ms | 10.0.0 |
tiny_yolo_v2 | Int8 | 416x416x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 10468.2 ms | 10.0.0 |
Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
---|---|---|---|---|---|---|---|---|---|---|---|---|
tiny_yolo_v2 | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 120.8 ms | 3.45 | 96.55 | 0 | v5.1.0 | OpenVX |
tiny_yolo_v2 | Int8 | 416x416x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 425.6 ms | 2.74 | 97.26 | 0 | v5.1.0 | OpenVX |
tiny_yolo_v2 | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 410.50 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
tiny_yolo_v2 | Int8 | 416x416x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 1347 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
tiny_yolo_v2 | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 619.70 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
tiny_yolo_v2 | Int8 | 416x416x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 2105 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
** To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization
Dataset details: link , License CC BY 4.0 , Quotation[1] , Number of classes: 80, Number of images: 118,287
Model | Format | Resolution | AP |
---|---|---|---|
tiny_yolo_v2 | Int8 | 192x192x3 | 33.7 % |
tiny_yolo_v2 | Float | 192x192x3 | 34.5 % |
tiny_yolo_v2 | Int8 | 224x224x3 | 37.3 % |
tiny_yolo_v2 | Float | 224x224x3 | 38.4 % |
tiny_yolo_v2 | Int8 | 416x416x3 | 50.7 % |
tiny_yolo_v2 | Float | 416x416x3 | 51.5 % |
* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
This model has been trained using a STMicroelectronics proprietary dataset which is not provided as part of the STM32 model zoo. The ST person dataset has been built by aggregating several public datasets and by applying data augmentation on these public datasets. If users wish to retrain this model it has to be done using another dataset selected by the user.
Model | Format | Resolution | AP |
---|---|---|---|
tiny_yolo_v2 | Int8 | 224x224x3 | 34.0 % |
* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
Please refer to the stm32ai-modelzoo-services GitHub here
[1] “Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download. @article{DBLP:journals/corr/LinMBHPRDZ14, author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick}, title = {Microsoft {COCO:} Common Objects in Context}, journal = {CoRR}, volume = {abs/1405.0312}, year = {2014}, url = {http://arxiv.org/abs/1405.0312}, archivePrefix = {arXiv}, eprint = {1405.0312}, timestamp = {Mon, 13 Aug 2018 16:48:13 +0200}, biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14}, bibsource = {dblp computer science bibliography, https://dblp.org} }