Skip to content

Latest commit

 

History

History
258 lines (190 loc) · 28.8 KB

File metadata and controls

258 lines (190 loc) · 28.8 KB

MobileNet v2

Use case : Image classification

Model description

MobileNet v2 is very similar to the original MobileNet, except that it uses inverted residual blocks with bottlenecking features.

It has a drastically lower parameter count than the original MobileNet.

MobileNet models support any input size greater than 32 x 32, with larger image sizes offering better performance. Alpha parameter: float, larger than zero, controls the width of the network. This is known as the width multiplier in the MobileNetV2 paper, but the name is kept for consistency with applications.

If alpha < 1.0, proportionally decreases the number of filters in each layer.

If alpha > 1.0, proportionally increases the number of filters in each layer.

If alpha = 1.0, default number of filters from the paper are used at each layer.

(source: https://keras.io/api/applications/mobilenet/)

The model is quantized in int8 using tensorflow lite converter.

Network information

Network Information Value
Framework TensorFlow Lite
MParams alpha=0.35 1.66 M
Quantization int8
Provenance https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet_v2
Paper https://arxiv.org/pdf/1801.04381.pdf

The models are quantized using tensorflow lite converter.

Network inputs / outputs

For an image resolution of NxM and P classes

Input Shape Description
(1, N, M, 3) Single NxM RGB image with UINT8 values between 0 and 255
Output Shape Description
(1, P) Per-class confidence for P classes in FLOAT32

Recommended platforms

Platform Supported Recommended
STM32L0 [] []
STM32L4 [x] []
STM32U5 [x] []
STM32H7 [x] [x]
STM32MP1 [x] [x]
STM32MP2 [x] [x]
STM32N6 [x] [x]

Performances

Metrics

  • Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
  • tfs stands for "training from scratch", meaning that the model weights were randomly initialized before training.
  • tl stands for "transfer learning", meaning that the model backbone weights were initialized from a pre-trained model, then only the last layer was unfrozen during the training.
  • fft stands for "full fine-tuning", meaning that the full model weights were initialized from a transfer learning pre-trained model, and all the layers were unfrozen during the training.

Reference NPU memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Series Internal RAM External RAM Weights Flash STM32Cube.AI version STEdgeAI Core version
MobileNet v2 0.35 fft food-101 Int8 128x128x3 STM32N6 240 0.0 715.67 10.0.0 2.0.0
MobileNet v2 0.35 fft food-101 Int8 224x224x3 STM32N6 980 0.0 730.7 10.0.0 2.0.0
MobileNet v2 1.0 fft food-101 Int8 224x224x3 STM32N6 2058 0.0 3110.05 10.0.0 2.0.0
MobileNet v2 0.35 fft Person Int8 128x128x3 STM32N6 240 0.0 589.45 10.0.0 2.0.0
MobileNet v2 0.35 ImageNet Int8 128x128x3 STM32N6 240 0.0 1840.94 10.0.0 2.0.0
MobileNet v2 0.35 ImageNet Int8 224x224x3 STM32N6 980 0.0 1855.97 10.0.0 2.0.0
MobileNet v2 1.0 ImageNet Int8 224x224x3 STM32N6 2058 0.0 4235.31 10.0.0 2.0.0
MobileNet v2 1.4 ImageNet Int8 224x224x3 STM32N6 2361 0.0 7315.69 10.0.0 2.0.0

Reference NPU inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Board Execution Engine Inference time (ms) Inf / sec STM32Cube.AI version STEdgeAI Core version
MobileNet v2 0.35 fft food-101 Int8 128x128x3 STM32N6570-DK NPU/MCU 3.33 300.30 10.0.0 2.0.0
MobileNet v2 0.35 fft food-101 Int8 224x224x3 STM32N6570-DK NPU/MCU 6.12 163.40 10.0.0 2.0.0
MobileNet v2 1.0 fft food-101 Int8 224x224x3 STM32N6570-DK NPU/MCU 18.08 55.32 10.0.0 2.0.0
MobileNet v2 0.35 fft Person Int8 224x224x3 STM32N6570-DK NPU/MCU 2.99 334.45 10.0.0 2.0.0
MobileNet v2 0.35 ImageNet Int8 128x128x3 STM32N6570-DK NPU/MCU 6.35 157.48 10.0.0 2.0.0
MobileNet v2 0.35 ImageNet Int8 224x224x3 STM32N6570-DK NPU/MCU 9.14 109.40 10.0.0 2.0.0
MobileNet v2 1.0 ImageNet Int8 224x224x3 STM32N6570-DK NPU/MCU 21.08 47.44 10.0.0 2.0.0
MobileNet v2 1.4 ImageNet Int8 224x224x3 STM32N6570-DK NPU/MCU 35.34 28.30 10.0.0 2.0.0

Reference MCU memory footprint based on Flowers and ImageNet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Series Activation RAM Runtime RAM Weights Flash Code Flash Total RAM Total Flash STM32Cube.AI version
MobileNet v2 0.35 fft Flowers Int8 128x128x3 STM32H7 237.32 KiB 30.14 KiB 406.86 KiB 108.29 KiB 267.46 KiB 515.15 KiB 10.0.0
MobileNet v2 0.35 fft Flowers Int8 224x224x3 STM32H7 832.64 KiB 30.19 KiB 406.86 KiB 108.40 KiB 862.83 KiB 515.26 KiB 10.0.0
MobileNet v2 0.35 ImageNet Int8 128x128x3 STM32H7 237.32 KiB 30.14 KiB 1654.5 KiB KiB 108.29 KiB 267.46 KiB 1762.79 KiB 10.0.0
MobileNet v2 0.35 ImageNet Int8 224x224x3 STM32H7 832.64 KiB 30.19 KiB 1654.5 KiB 108.40 KiB 862.83 KiB 1762.9 KiB 10.0.0
MobileNet v2 1.0 ImageNet Int8 224x224x3 STM32H7 1727.02 KiB 30.19 KiB 3458.97 KiB 157.37 KiB 1757.21 KiB 3616.34 KiB 10.0.0
MobileNet v2 1.4 ImageNet Int8 224x224x3 STM32H7 2332.2 KiB 30.19 KiB 6015.34 KiB 191.16 KiB 2362.39 KiB 6206.53 KiB 10.0.0

Reference MCU inference time based on Flowers and ImageNet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Board Execution Engine Frequency Inference time (ms) STM32Cube.AI version
MobileNet v2 0.35 fft Flowers Int8 128x128x3 STM32H747I-DISCO 1 CPU 400 MHz 94.34 ms 10.0.0
MobileNet v2 0.35 fft Flowers Int8 224x224x3 STM32H747I-DISCO 1 CPU 400 MHz 290.75 ms 10.0.0
MobileNet v2 0.35 ImageNet Int8 128x128x3 STM32H747I-DISCO 1 CPU 400 MHz 116.13 ms 10.0.0
MobileNet v2 0.35 ImageNet Int8 224x224x3 STM32H747I-DISCO 1 CPU 400 MHz 313.92 ms 10.0.0
MobileNet v2 1.0 ImageNet Int8 224x224x3 STM32H747I-DISCO 1 CPU 400 MHz 1106.64 ms 10.0.0
MobileNet v2 1.4 ImageNet Int8 224x224x3 STM32H747I-DISCO 1 CPU 400 MHz 2010.66 ms 10.0.0

Reference MPU inference time based on Flowers and ImageNet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Quantization Board Execution Engine Frequency Inference time (ms) %NPU %GPU %CPU X-LINUX-AI version Framework
MobileNet v2 1.0_per_tensor ImageNet Int8 224x224x3 per-tensor STM32MP257F-DK2 NPU/GPU 800 MHz 11.92 ms 92.74 7.26 0 v5.1.0 OpenVX
MobileNet v2 1.0 ImageNet Int8 224x224x3 per-channel ** STM32MP257F-DK2 NPU/GPU 800 MHz 76.29 ms 3.13 96.87 0 v5.1.0 OpenVX
MobileNet v2 0.35 fft Flowers Int8 224x224x3 per-channel ** STM32MP257F-DK2 NPU/GPU 800 MHz 25.51 ms 4.37 95.63 0 v5.1.0 OpenVX
MobileNet v2 0.35 fft Flowers Int8 128x128x3 per-channel ** STM32MP257F-DK2 NPU/GPU 800 MHz 9.14 ms 12.06 87.94 0 v5.1.0 OpenVX
MobileNet v2 1.0_per_tensor ImageNet Int8 224x224x3 per-tensor STM32MP157F-DK2 2 CPU 800 MHz 332.9 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
MobileNet v2 1.0 ImageNet Int8 128x128x3 per-channel STM32MP157F-DK2 2 CPU 800 MHz 194.1 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
MobileNet v2 0.35 fft Flowers Int8 224x224x3 per-channel STM32MP157F-DK2 2 CPU 800 MHz 54.52 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
MobileNet v2 0.35 fft Flowers Int8 128x128x3 per-channel STM32MP157F-DK2 2 CPU 800 MHz 17.16 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
MobileNet v2 1.0_per_tensor ImageNet Int8 224x224x3 per-tensor STM32MP135F-DK2 1 CPU 1000 MHz 415.7 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
MobileNet v2 1.0 ImageNet Int8 128x128x3 per-channel STM32MP135F-DK2 1 CPU 1000 MHz 308.80 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
MobileNet v2 0.35 fft Flowers Int8 224x224x3 per-channel STM32MP135F-DK2 1 CPU 1000 MHz 54.85 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0
MobileNet v2 0.35 fft Flowers Int8 128x128x3 per-channel STM32MP135F-DK2 1 CPU 1000 MHz 27.17 ms NA NA 100 v5.1.0 TensorFlowLite 2.11.0

** To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization

Accuracy with Flowers dataset

Dataset details: link , License CC BY 2.0 , Quotation[1] , Number of classes: 5, Number of images: 3 670

Model Format Resolution Top 1 Accuracy
MobileNet v2 0.35 tfs Float 128x128x3 87.06 %
MobileNet v2 0.35 tfs Int8 128x128x3 87.47 %
MobileNet v2 0.35 tl Float 128x128x3 88.15 %
MobileNet v2 0.35 tl Int8 128x128x3 88.01 %
MobileNet v2 0.35 fft Float 128x128x3 91.83 %
MobileNet v2 0.35 fft Int8 128x128x3 91.01 %
MobileNet v2 0.35 tfs Float 224x224x3 88.69 %
MobileNet v2 0.35 tfs Int8 224x224x3 88.83 %
MobileNet v2 0.35 tl Float 224x224x3 88.96 %
MobileNet v2 0.35 tl Int8 224x224x3 88.01 %
MobileNet v2 0.35 fft Float 224x224x3 93.6 %
MobileNet v2 0.35 fft Int8 224x224x3 92.78 %

Accuracy with Plant-village dataset

Dataset details: link , License CC0 1.0, Quotation[2] , Number of classes: 39, Number of images: 61 486

Model Format Resolution Top 1 Accuracy
MobileNet v2 0.35 tfs Float 128x128x3 99.86 %
MobileNet v2 0.35 tfs Int8 128x128x3 99.83 %
MobileNet v2 0.35 tl Float 128x128x3 93.51 %
MobileNet v2 0.35 tl Int8 128x128x3 92.33 %
MobileNet v2 0.35 fft Float 128x128x3 99.77 %
MobileNet v2 0.35 fft Int8 128x128x3 99.48 %
MobileNet v2 0.35 tfs Float 224x224x3 99.86 %
MobileNet v2 0.35 tfs Int8 224x224x3 99.81 %
MobileNet v2 0.35 tl Float 224x224x3 93.62 %
MobileNet v2 0.35 tl Int8 224x224x3 92.8 %
MobileNet v2 0.35 fft Float 224x224x3 99.95 %
MobileNet v2 0.35 fft Int8 224x224x3 99.68 %

Accuracy with Food-101 dataset

Dataset details: link, Quotation[3] , Number of classes: 101 , Number of images: 101 000

Model Format Resolution Top 1 Accuracy
MobileNet v2 0.35 tfs Float 128x128x3 64.22 %
MobileNet v2 0.35 tfs Int8 128x128x3 63.41 %
MobileNet v2 0.35 tl Float 128x128x3 44.74 %
MobileNet v2 0.35 tl Int8 128x128x3 42.01 %
MobileNet v2 0.35 fft Float 128x128x3 64.22 %
MobileNet v2 0.35 fft Int8 128x128x3 63.41 %
MobileNet v2 0.35 tfs Float 224x224x3 72.31 %
MobileNet v2 0.35 tfs Int8 224x224x3 72.05 %
MobileNet v2 0.35 tl Float 224x224x3 49.01 %
MobileNet v2 0.35 tl Int8 224x224x3 47.26 %
MobileNet v2 0.35 fft Float 224x224x3 73.76 %
MobileNet v2 0.35 fft Int8 224x224x3 73.16 %
MobileNet v2 1.0 fft Float 224x224x3 77.77 %
MobileNet v2 1.0 fft Int8 224x224x3 77.09 %

Accuracy with person dataset

The person dataset is derived from COCO-2014 and created using the script here (link). The dataset folder has 2 sub-folders — person and notperson containing images of the respective types Dataset details: link , License Creative Commons Attribution 4.0, Quotation[3] , Number of classes: 2 , Number of images: 84810

Model Format Resolution Top 1 Accuracy
MobileNet v2 0.35 tfs Float 128x128x3 92.56 %
MobileNet v2 0.35 tfs Int8 128x128x3 92.44 %
MobileNet v2 0.35 tl Float 128x128x3 92.28 %
MobileNet v2 0.35 tl Int8 128x128x3 91.63 %
MobileNet v2 0.35 fft Float 128x128x3 95.37 %
MobileNet v2 0.35 fft Int8 128x128x3 94.95 %

Accuracy with ImageNet

Dataset details: link, Quotation[4]. Number of classes: 1000. To perform the quantization, we calibrated the activations with a random subset of the training set. For the sake of simplicity, the accuracy reported here was estimated on the 50000 labelled images of the validation set.

Model Format Resolution Top 1 Accuracy
MobileNet v2 0.35 Float 128x128x3 46.96 %
MobileNet v2 0.35 Int8 128x128x3 43.94 %
MobileNet v2 0.35 Float 224x224x3 56.44 %
MobileNet v2 0.35 Int8 224x224x3 54.7 %
MobileNet v2 1.0 Float 224x224x3 68.87 %
MobileNet v2 1.0 Int8 224x224x3 67.97 %
MobileNet v2 1.0_per_tensor Int8 224x224x3 64.53 %
MobileNet v2 1.4 Float 224x224x3 71.97 %
MobileNet v2 1.4 Int8 224x224x3 71.46 %

Retraining and Integration in a simple example:

Please refer to the stm32ai-modelzoo-services GitHub here

References

[1] "Tf_flowers : tensorflow datasets," TensorFlow. [Online]. Available: https://www.tensorflow.org/datasets/catalog/tf_flowers.

[2] J, ARUN PANDIAN; GOPAL, GEETHARAMANI (2019), "Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network", Mendeley Data, V1, doi: 10.17632/tywbtsjrjv.1

[3] L. Bossard, M. Guillaumin, and L. Van Gool, "Food-101 -- Mining Discriminative Components with Random Forests." European Conference on Computer Vision, 2014.

[4] Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) ImageNet Large Scale Visual Recognition Challenge.