Skip to content

Latest commit

 

History

History
147 lines (103 loc) · 13 KB

File metadata and controls

147 lines (103 loc) · 13 KB

EfficientNet v2

Use case : Image classification

Model description

EfficientNet v2 family is one of the best topologies for image classification. It has been obtained through neural architecture search with a special care given to training time and number of parameters reduction.

This family of networks comprises various subtypes: B0 (224x224), B1 (240x240), B2 (260x260), B3 (300x300), S (384x384) ranked by depth and width increasing order. There are also M, L, XL variants but too large to be executed efficiently on STM32N6.

All these networks are already available on https://www.tensorflow.org/api_docs/python/tf/keras/applications/ pre-trained on ImageNet.

Network information

Network Information Value
Framework TensorFlow Lite/ONNX quantizer
MParams type=B0 7.1 M
Quantization int8
Provenance https://www.tensorflow.org/api_docs/python/tf/keras/applications/efficientnet_v2
Paper https://arxiv.org/pdf/2104.00298

The models are quantized using tensorflow lite converter or ONNX quantizer.

Network inputs / outputs

For an image resolution of NxM and P classes

Input Shape Description
(1, N, M, 3) Single NxM RGB image with UINT8 values between 0 and 255 for tflite
(1, 3, N, M) Single NxM RGB image with INT8 values between -128 and 127 for ONNX
Output Shape Description
(1, P) Per-class confidence for P classes in FLOAT32 for tflite
(1, P) Per-class confidence for P classes in FLOAT32 for ONNX

Recommended platforms

Platform Supported Recommended
STM32L0 [] []
STM32L4 [] []
STM32U5 [] []
STM32H7 [] []
STM32MP1 [x] [x]
STM32MP2 [x] [x]
STM32N6 [x] [x]

Performances

Metrics

  • Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
  • fft stands for "full fine-tuning", meaning that the full model weights were initialized from a transfer learning pre-trained model, and all the layers were unfrozen during the training.

Reference NPU memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Series Internal RAM (KiB) External RAM (KiB) Weights Flash (KiB) STM32Cube.AI version STEdgeAI Core version
efficientnet_v2B0_224_fft onnx food-101 Int8 224x224x3 STM32N6 1834.44 0.0 7553.77 10.0.0 2.0.0
efficientnet_v2B1_240_fft onnx food-101 Int8 240x240x3 STM32N6 2589.97 0.0 8924.78 10.0.0 2.0.0
efficientnet_v2B2_260_fft onnx food-101 Int8 260x260x3 STM32N6 2629.56 528.12 11212.75 10.0.0 2.0.0
efficientnet_v2S_384_fft onnx food-10 Int8 384x384x3 STM32N6 2700 6912 25756.92 10.0.0 2.0.0
efficientnet_v2B0_224 onnx ImageNet Int8 224x224x3 STM32N6 1834.44 0.0 8680.39 10.0.0 2.0.0
efficientnet_v2B1_240 onnx ImageNet Int8 240x240x3 STM32N6 2589.97 0.0 10051.7 10.0.0 2.0.0
efficientnet_v2B2_260 onnx ImageNet Int8 260x260x3 STM32N6 2629.56 528.12 12451.77 10.0.0 2.0.0
efficientnet_v2S_384 onnx ImageNet Int8 384x384x3 STM32N6 2700 6912 26884.47 10.0.0 2.0.0

Reference NPU inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Board Execution Engine Inference time (ms) Inf / sec STM32Cube.AI version STEdgeAI Core version
efficientnet_v2B0_224_fft onnx food-101 Int8 224x224x3 STM32N6570-DK NPU/MCU 54.32 18.41 10.0.0 2.0.0
efficientnet_v2B1_240_fft onnx food-101 Int8 240x240x3 STM32N6570-DK NPU/MCU 73.89 13.53 10.0.0 2.0.0
efficientnet_v2B2_260_fft onnx food-101 Int8 260x260x3 STM32N6570-DK NPU/MCU 146.01 6.85 10.0.0 2.0.0
efficientnet_v2S_384_fft onnx food-101 Int8 384x384x3 STM32N6570-DK NPU/MCU 842 1.19 10.0.0 2.0.0
efficientnet_v2B0_224 onnx ImageNet Int8 224x224x3 STM32N6570-DK NPU/MCU 57.5 17.39 10.0.0 2.0.0
efficientnet_v2B1_240 onnx ImageNet Int8 240x240x3 STM32N6570-DK NPU/MCU 77.25 12.94 10.0.0 2.0.0
efficientnet_v2B2_260 onnx ImageNet Int8 260x260x3 STM32N6570-DK NPU/MCU 148.78 6.72 10.0.0 2.0.0
efficientnet_v2S_384 onnx ImageNet Int8 384x384x3 STM32N6570-DK NPU/MCU 809.73 1.23 10.0.0 2.0.0
  • The deployment of all the models listed in the table is supported, except for the efficientnet_v2S_384 model, for which support is coming soon.

Accuracy with Food-101 dataset

Dataset details: link, Quotation[3] , Number of classes: 101 , Number of images: 101 000

Model Format Resolution Top 1 Accuracy
efficientnet_v2B0_224_fft Float 224x224x3 81.35 %
efficientnet_v2B0_224_fft onnx Int8 224x224x3 81.1 %
efficientnet_v2B1_240_fft Float 240x240x3 83.23 %
efficientnet_v2B1_240_fft onnx Int8 240x240x3 82.95 %
efficientnet_v2B2_260_fft Float 260x260x3 84.37 %
efficientnet_v2B2_260_fft onnx Int8 260x260x3 84.04 %
efficientnet_v2S_384_fft Float 384x384x3 88.16 %
efficientnet_v2S_384_fft onnx Int8 384x384x3 87.34 %

Accuracy with ImageNet

Dataset details: link, Quotation[4]. Number of classes: 1000. To perform the quantization, we calibrated the activations with a random subset of the training set. For the sake of simplicity, the accuracy reported here was estimated on the 10000 labelled images of the validation set.

Model Format Resolution Top 1 Accuracy
efficientnet_v2B0_224 Float 224x224x3 73.94 %
efficientnet_v2B0_224 onnx Int8 224x224x3 72.21 %
efficientnet_v2B1_240 Float 240x240x3 76.14 %
efficientnet_v2B1_240 onnx Int8 240x240x3 75.5 %
efficientnet_v2B2_260 Float 260x260x3 76.58 %
efficientnet_v2B2_260 onnx Int8 260x260x3 76.26 %
efficientnet_v2S_384 Float 384x384x3 83.52 %
efficientnet_v2S_384 onnx Int8 384x384x3 83.07 %

Retraining and Integration in a simple example:

Please refer to the stm32ai-modelzoo-services GitHub here

References

[1] "Tf_flowers : tensorflow datasets," TensorFlow. [Online]. Available: https://www.tensorflow.org/datasets/catalog/tf_flowers.

[2] J, ARUN PANDIAN; GOPAL, GEETHARAMANI (2019), "Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network", Mendeley Data, V1, doi: 10.17632/tywbtsjrjv.1

[3] L. Bossard, M. Guillaumin, and L. Van Gool, "Food-101 -- Mining Discriminative Components with Random Forests." European Conference on Computer Vision, 2014.

[4] Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) ImageNet Large Scale Visual Recognition Challenge.