-
Notifications
You must be signed in to change notification settings - Fork 234
01_introduction
Table of Contents
The software package SPECFEM3D Cartesian simulates seismic wave propagation at the local or regional scale and performs full waveform imaging (FWI) or adjoint tomography based upon the spectral-element method (SEM). The SEM is a continuous Galerkin technique (Tromp, Komatitsch, and Liu 2008; Peter et al. 2011), which can easily be made discontinuous (Bernardi, Maday, and Patera 1994; Chaljub 2000; Kopriva, Woodruff, and Hussaini 2002; Chaljub, Capdeville, and Vilotte 2003; Legay, Wang, and Belytschko 2005; Kopriva 2006; Wilcox et al. 2010; Acosta Minolia and Kopriva 2011); it is then close to a particular case of the discontinuous Galerkin technique (Reed and Hill 1973; Lesaint and Raviart 1974; Arnold 1982; Johnson and Pitkäranta 1986; Bourdel, Mazet, and Helluy 1991; Falk and Richter 1999; Hu, Hussaini, and Rasetarinera 1999; Cockburn, Karniadakis, and Shu 2000; Giraldo, Hesthaven, and Warburton 2002; Rivière and Wheeler 2003; Monk and Richter 2005; Grote, Schneebeli, and Schötzau 2006; Ainsworth, Monk, and Muniz 2006; Bernacki, Lanteri, and Piperno 2006; Dumbser and Käser 2006; De Basabe, Sen, and Wheeler 2008; Puente, Ampuero, and Käser 2009; Wilcox et al. 2010; De Basabe and Sen 2010; Étienne et al. 2010), with optimized efficiency because of its tensorized basis functions (Wilcox et al. 2010; Acosta Minolia and Kopriva 2011). In particular, it can accurately handle very distorted mesh elements (Oliveira and Seriani 2011).
In fluids, when gravity is turned off, SPECFEM3D uses the classical linearized Euler equation; thus if you have sharp local variations of density in the fluid (highly heterogeneous fluids in terms of density) or if density becomes extremely small in some regions of your model (e.g. for upper-atmosphere studies), before using the code please make sure the linearized Euler equation is a valid approximation in the case you want to study, and/or see if you should turn gravity on. For more details on that see e.g. Jensen et al. (2011).
It has very good accuracy and convergence properties (Maday and Patera 1989; Seriani and Priolo 1994; Deville, Fischer, and Mund 2002; Cohen 2002; De Basabe and Sen 2007; Seriani and Oliveira 2008; Ainsworth and Wajid 2009; Ainsworth and Wajid 2010; Melvin, Staniforth, and Thuburn 2012). The spectral element approach admits spectral rates of convergence and allows exploiting (hp)-convergence schemes. It is also very well suited to parallel implementation on very large supercomputers (Komatitsch et al. 2003; Tsuboi et al. 2003; Komatitsch, Labarta, and Michéa 2008; Carrington et al. 2008; Komatitsch, Vinnik, and Chevrot 2010) as well as on clusters of GPU accelerating graphics cards (Komatitsch 2011; Michéa and Komatitsch 2010; Komatitsch, Michéa, and Erlebacher 2009; Komatitsch et al. 2010). Tensor products inside each element can be optimized to reach very high efficiency (Deville, Fischer, and Mund 2002), and mesh point and element numbering can be optimized to reduce processor cache misses and improve cache reuse (Komatitsch, Labarta, and Michéa 2008). The SEM can also handle triangular (in 2D) or tetrahedral (in 3D) elements (Wingate and Boyd 1996; Taylor and Wingate 2000; Komatitsch et al. 2001; Cohen 2002; Mercerat, Vilotte, and Sánchez-Sesma 2006) as well as mixed meshes, although with increased cost and reduced accuracy in these elements, as in the discontinuous Galerkin method.
Note that in many geological models in the context of seismic wave propagation studies (except for instance for fault dynamic rupture studies, in which very high frequencies or supershear rupture need to be modeled near the fault, see e.g. Benjemaa et al. (2007; Benjemaa et al. 2009; Puente, Ampuero, and Käser 2009; Tago et al. 2010)) a continuous formulation is sufficient because material property contrasts are not drastic and thus conforming mesh doubling bricks can efficiently handle mesh size variations (D. Komatitsch and Tromp 2002a; Komatitsch et al. 2004; Lee et al. 2008; Lee, Chan, et al. 2009; Lee, Komatitsch, et al. 2009).
For a detailed introduction to the SEM as applied to regional seismic wave propagation, please consult Peter et al. (2011; Tromp, Komatitsch, and Liu 2008; Komatitsch and Vilotte 1998; Komatitsch and Tromp 1999; Chaljub et al. 2007) and in particular Lee, Komatitsch, et al. (2009; Lee, Chan, et al. 2009; Lee et al. 2008; Godinho et al. 2009; Wijk et al. 2004; Komatitsch et al. 2004). A detailed theoretical analysis of the dispersion and stability properties of the SEM is available in Cohen (2002), De Basabe and Sen (2007), Seriani and Oliveira (2007), Seriani and Oliveira (2008) and Melvin, Staniforth, and Thuburn (2012).
Effects due to lateral variations in compressional-wave speed, shear-wave speed, density, a 3D crustal model, topography and bathymetry are included. The package can accommodate full 21-parameter anisotropy (see Chen and Tromp (2007)) as well as lateral variations in attenuation (Savage, Komatitsch, and Tromp 2010). Adjoint capabilities and finite-frequency kernel simulations are included (Tromp, Komatitsch, and Liu 2008; Peter et al. 2011; Liu and Tromp 2006; Fichtner et al. 2009; Virieux and Operto 2009).
The SEM was originally developed in computational fluid dynamics (Patera 1984; Maday and Patera 1989) and has been successfully adapted to address problems in seismic wave propagation. Early seismic wave propagation applications of the SEM, utilizing Legendre basis functions and a perfectly diagonal mass matrix, include Cohen, Joly, and Tordjman (1993), Komatitsch (1997), Faccioli et al. (1997), Casadei and Gabellini (1997), Komatitsch and Vilotte (1998) and Komatitsch and Tromp (1999), whereas applications involving Chebyshev basis functions and a non-diagonal mass matrix include Seriani and Priolo (1994), Priolo, Carcione, and Seriani (1994) and Seriani, Priolo, and Pregarz (1995). In the Legendre version that we use in SPECFEM the mass matrix is purposely slightly inexact but diagonal (but can be made exact if needed, see Teukolsky (2015)), while in the Chebyshev version it is exact but non diagonal.
Beware that, in a spectral-element method, some spurious modes (that have some similarities with classical so-called “Hourglass modes” in finite-element techniques, although in the SEM they are not zero-energy modes) can appear in some (but not all) cases in the spectral element in which the source is located. Fortunately, they do not propagate away from the source element. However, this means that if you put a receiver in the same spectral element as a source, the recorded signals may in some cases be wrong, typically exhibiting some spurious oscillations, which are often even non causal. If that is the case, an easy option is to slightly change the mesh in the source region in order to get rid of these Hourglass-like spurious modes, as explained in Duczek et al. (2014), in which this phenomenon is described in details, and in which practical solutions to avoid it are suggested.
All SPECFEM3D software is written in Fortran2003 with full portability in mind, and conforms strictly to the Fortran2003 standard. It uses no obsolete or obsolescent features of Fortran. The package uses parallel programming based upon the Message Passing Interface (MPI) (Gropp, Lusk, and Skjellum 1994; Pacheco 1997).
SPECFEM3D won the Gordon Bell award for best performance at the SuperComputing 2003 conference in Phoenix, Arizona (USA) (see Komatitsch et al. (2003) and www.sc-conference.org/sc2003/nrfinalaward.html). It was a finalist again in 2008 for a run at 0.16 petaflops (sustained) on 149,784 processors of the ‘Jaguar’ Cray XT5 system at Oak Ridge National Laboratories (USA) (Carrington et al. 2008). It also won the BULL Joseph Fourier supercomputing award in 2010.
It reached the sustained one petaflop performance level for the first time in February 2013 on the Blue Waters Cray supercomputer at the National Center for Supercomputing Applications (NCSA), located at the University of Illinois at Urbana-Champaign (USA).
This new release of the code includes Convolution or Auxiliary Differential Equation Perfectly Matched absorbing Layers (C-PML or ADE-PML) (Martin, Komatitsch, and Ezziani 2008; Martin, Komatitsch, and Gedney 2008; Martin and Komatitsch 2009; Martin et al. 2010; Komatitsch and Martin 2007). It also includes support for GPU graphics card acceleration (Komatitsch 2011; Michéa and Komatitsch 2010; Komatitsch, Michéa, and Erlebacher 2009; Komatitsch et al. 2010).
The next release of the code will use the PT-SCOTCH parallel and threaded version of SCOTCH for mesh partitioning instead of the serial version.
SPECFEM3D Cartesian includes coupled fluid-solid domains and adjoint capabilities, which enables one to address seismological inverse problems, but for linear rheologies only so far. To accommodate visco-plastic or non-linear rheologies, the reader can refer to the GeoELSE software package (Casadei and Gabellini 1997; Stupazzini, Paolucci, and Igel 2009).
-
FWI: SPECFEM3D can now perform full waveform inversion (FWI), i.e. invert for models in an iterative fashion, and it can also perform source inversions in a constant model; please refer to the two new directories,
inverse_problem_for_model
andinverse_problem_for_source
, and the README files they contain. For FWI inversions for the model, also refer to the new examples provided in directoryEXAMPLES
. -
External coupling: SPECFEM3D can now perform coupling with an external code (DSM, AxiSEM or FK) based on a database of displacement vectors and traction vectors on the outer edges of the mesh created once and for all (see Monteiller et al. (2013; Monteiller et al. 2015; Wang et al. 2016; Tong, Chen, et al. 2014; Tong, Komatitsch, et al. 2014), and if you use that feature of the code please cite at least one of these papers).
To use coupling with FK, just use the set of parameters that is in the DATA/Par_file input file of the code:
#----------------------------------------------------------- # # Coupling with an injection technique (DSM, AxiSEM, or FK) # #----------------------------------------------------------- COUPLE_WITH_INJECTION_TECHNIQUE = .false. INJECTION_TECHNIQUE_TYPE = 3 # 1 = DSM, 2 = AxiSEM, 3 = FK MESH_A_CHUNK_OF_THE_EARTH = .false. TRACTION_PATH = ./DATA/AxiSEM_tractions/3/ FKMODEL_FILE = FKmodel RECIPROCITY_AND_KH_INTEGRAL = .false. # does not work yet
That part (coupling with FK) is actively maintained and works fine. See e.g. GRL_Ping_Tong_2014 for some examples. There is also an example that is provided with the code:
specfem3d/EXAMPLES/small_example_coupling_FK_specfem
.Regarding coupling with DSM, that part is not actively maintained any more, but it is still included in the code, you may have to test it again and make minor adjustments if needed. The necessary tools are in directory
specfem3d/EXTERNAL_PACKAGES_coupled_with_SPECFEM3D/DSM_for_SPECFEM3D
, and there is aREADME
file inspecfem3d/EXTERNAL_PACKAGES_coupled_with_SPECFEM3D
that should be more or less up-to-date (there are about four steps to follow in total, the first one being creating the database of DSM tractions and displacements on the edges of the coupling box). See e.g. GJI_Vadim_2013 and GJI_Vadim_2015 for some examples. -
Gravity: SPECFEM3D can now perform gravity field calculations in addition (or instead of) seismic wave propagation only. See flag
GRAVITY_INTEGRALS
in filesetup/constants.h.in
. Please also refer to GJI_Martin_gravimetry_2017. And yes, that is the reason why Dimitri added a falling apple on the cover of the manual :-). Note that SPECFEM3D can also model transient gravity perturbations induced by earthquake rupture, as developed and explained in Harms et al. (2015). These are two different things, and both are implemented and avaible in SPECFEM3D. To use the second feature, please refer todoc/how_to/README_gravity_perturbation.txt
.
You can find all the references below in format in file doc/USER_MANUAL/bibliography.bib
.
If you use SPECFEM3D Cartesian for your own research, please cite at least one of the following articles:
Numerical simulations in general
Forward and adjoint simulations are described in detail in Tromp, Komatitsch, and Liu (2008; Peter et al. 2011; Vai et al. 1999; Komatitsch, Michéa, and Erlebacher 2009; Komatitsch et al. 2010; Chaljub et al. 2007; Madec, Komatitsch, and Diaz 2009; Komatitsch, Vinnik, and Chevrot 2010; Carrington et al. 2008; Tromp et al. 2010; Komatitsch, Ritsema, and Tromp 2002; D. Komatitsch and Tromp 2002a; D. Komatitsch and Tromp 2002b; Komatitsch and Tromp 1999) or Komatitsch and Vilotte (1998). Additional aspects of adjoint simulations are described in Tromp, Tape, and Liu (2005; Liu and Tromp 2006; Tromp, Komatitsch, and Liu 2008; Liu and Tromp 2008; Tromp et al. 2010; Peter et al. 2011). Domain decomposition is explained in detail in Martin et al. (2008), and excellent scaling up to 150,000 processor cores is shown for instance in Carrington et al. (2008; Komatitsch, Labarta, and Michéa 2008; Martin et al. 2008; Komatitsch et al. 2010; Komatitsch 2011),
GPU computing
Computing on GPU graphics cards for acoustic or seismic wave propagation applications is described in detail in Komatitsch (2011; Michéa and Komatitsch 2010; Komatitsch, Michéa, and Erlebacher 2009; Komatitsch et al. 2010).
If you use this new version, which has non blocking MPI for much better performance for medium or large runs, please cite at least one of these six articles, in which results of non blocking MPI runs are presented: Peter et al. (2011; Komatitsch et al. 2010; Komatitsch, Vinnik, and Chevrot 2010; Komatitsch 2011; Carrington et al. 2008; Martin et al. 2008).
If you use the C-PML absorbing layer capabilities of the code, please cite at least one article written by the developers of the package, for instance:
-
Xie et al. (2014),
-
Xie et al. (2016).
If you use the UNDO_ATTENUATION option of the code in order to produce full anelastic/viscoelastic sensitivity kernels, please cite at least one article written by the developers of the package, for instance (and in particular):
- Komatitsch et al. (2016).
More generally, if you use the attenuation (anelastic/viscoelastic) capabilities of the code, please cite at least one article written by the developers of the package, for instance:
-
Komatitsch et al. (2016),
-
Blanc et al. (2016).
If you use the kernel capabilities of the code, please cite at least one article written by the developers of the package, for instance:
-
Tromp, Komatitsch, and Liu (2008),
-
Peter et al. (2011),
-
Liu and Tromp (2006),
-
Morency, Luo, and Tromp (2009).
If you work on geophysical applications, you may be interested in citing some of these application articles as well, among others:
Southern California simulations
Komatitsch et al. (2004; Krishnan et al. 2006a; Krishnan et al. 2006b).
If you use the 3D southern California model, please cite Süss and Shaw (2003) (Los Angeles model), Lovely et al. (2006) (Salton Trough), and Hauksson (2000) (southern California). The Moho map was determined by Zhu and Kanamori (2000). The 1D SoCal model was developed by Dreger and Helmberger (1990).
Anisotropy
Chen and Tromp (2007; Ji et al. 2005; Chevrot, Favier, and Komatitsch 2004; Favier, Chevrot, and Komatitsch 2004; Ritsema et al. 2002; Tromp and Komatitsch 2000).
Attenuation
Savage, Komatitsch, and Tromp (2010; D. Komatitsch and Tromp 2002a; Komatitsch and Tromp 1999).
Topography
Lee, Komatitsch, et al. (2009; Lee, Chan, et al. 2009; Lee et al. 2008; Godinho et al. 2009; Wijk et al. 2004).
The corresponding BibTeX entries may be found in file doc/USER_MANUAL/bibliography.bib
.
This material is based upon work supported by the USA National Science Foundation under Grants No. EAR-0406751 and EAR-0711177, by the French CNRS, French INRIA Sud-Ouest MAGIQUE-3D, French ANR NUMASIS under Grant No. ANR-05-CIGC-002, and European FP6 Marie Curie International Reintegration Grant No. MIRG-CT-2005-017461. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the USA National Science Foundation, CNRS, INRIA, ANR or the European Marie Curie program.
Acosta Minolia, Cesar A., and David A. Kopriva. 2011. “Discontinuous Galerkin Spectral Element Approximations on Moving Meshes.” J. Comput. Phys. 230 (5): 1876–1902. doi:10.1016/j.jcp.2010.11.038.
Ainsworth, M., and H. Wajid. 2009. “Dispersive and Dissipative Behavior of the Spectral Element Method.” SIAM Journal on Numerical Analysis 47 (5): 3910–37. doi:10.1137/080724976.
———. 2010. “Optimally Blended Spectral-Finite Element Scheme for Wave Propagation and NonStandard Reduced Integration.” SIAM Journal on Numerical Analysis 48 (1): 346–71. doi:10.1137/090754017.
Ainsworth, M., P. Monk, and W. Muniz. 2006. “Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation.” Journal of Scientific Computing 27 (1): 5–40. doi:10.1007/s10915-005-9044-x.
Arnold, Douglas N. 1982. “An Interior Penalty Finite Element Method with Discontinuous Elements.” SIAM Journal on Numerical Analysis 19 (4): 742–60. doi:10.1137/0719052.
Benjemaa, M., N. Glinsky-Olivier, V. M. Cruz-Atienza, and J. Virieux. 2009. “3D Dynamic Rupture Simulation by a Finite Volume Method.” Geophys. J. Int. 178 (1): 541–60. doi:10.1111/j.1365-246X.2009.04088.x.
Benjemaa, M., N. Glinsky-Olivier, V. M. Cruz-Atienza, J. Virieux, and S. Piperno. 2007. “Dynamic Non-Planar Crack Rupture by a Finite Volume Method.” Geophys. J. Int. 171 (1): 271–85. doi:10.1111/j.1365-246X.2006.03500.x.
Bernacki, Marc, Stéphane Lanteri, and Serge Piperno. 2006. “Time-Domain Parallel Simulation of Heterogeneous Wave Propagation on Unstructured Grids Using Explicit, Nondiffusive, Discontinuous Galerkin Methods.” J. Comput. Acoust. 14 (1): 57–81.
Bernardi, C., Y. Maday, and A. T. Patera. 1994. “A New Nonconforming Approach to Domain Decomposition: The Mortar Element Method.” In Nonlinear Partial Differential Equations and Their Applications, edited by H. Brezis and J. L. Lions, 13–51. Séminaires Du Collège de France. Paris: Pitman.
Blanc, Émilie, Dimitri Komatitsch, Emmanuel Chaljub, Bruno Lombard, and Zhinan Xie. 2016. “Highly Accurate Stability-Preserving Optimization of the Zener Viscoelastic Model, with Application to Wave Propagation in the Presence of Strong Attenuation.” Geophys. J. Int. 205 (1): 427–39. doi:10.1093/gji/ggw024.
Bourdel, Françoise, Pierre-Alain Mazet, and Philippe Helluy. 1991. “Resolution of the Non-Stationary or Harmonic Maxwell Equations by a Discontinuous Finite Element Method: Application to an E.M.I. (Electromagnetic Impulse) Case.” In Proceedings of the 10th International Conference on Computing Methods in Applied Sciences and Engineering, 405–22. Commack, NY, USA: Nova Science Publishers.
Carrington, Laura, Dimitri Komatitsch, Michael Laurenzano, Mustafa Tikir, David Michéa, Nicolas Le Goff, Allan Snavely, and Jeroen Tromp. 2008. “High-Frequency Simulations of Global Seismic Wave Propagation Using SPECFEM3D_GLOBE on 62 Thousand Processor Cores.” In Proceedings of the SC’08 ACM/IEEE Conference on Supercomputing, 60:1–60:11. Austin, Texas, USA: IEEE Press. doi:10.1145/1413370.1413432.
Casadei, F., and E. Gabellini. 1997. Implementation of a 3D Coupled Spectral Element Solver for Wave Propagation and Soil-Structure Interaction Simulations. Ispra, Italy: European Commission Joint Research Center Report EUR17730EN.
Chaljub, E. 2000. “Modélisation Numérique de La Propagation d’ondes Sismiques En Géométrie Sphérique : Application À La Sismologie Globale (Numerical Modeling of the Propagation of Seismic Waves in Spherical Geometry: application to Global Seismology).” PhD thesis, Paris, France: Université Paris VII Denis Diderot.
Chaljub, E., Y. Capdeville, and J. P. Vilotte. 2003. “Solving Elastodynamics in a Fluid-Solid Heterogeneous Sphere: A Parallel Spectral-Element Approximation on Non-Conforming Grids.” J. Comput. Phys. 187 (2): 457–91.
Chaljub, Emmanuel, Dimitri Komatitsch, Jean Pierre Vilotte, Yann Capdeville, Bernard Valette, and Gaetano Festa. 2007. “Spectral Element Analysis in Seismology.” In Advances in Wave Propagation in Heterogeneous Media, edited by Ru-Shan Wu and Valérie Maupin, 48:365–419. Advances in Geophysics. Elsevier - Academic Press, London, UK.
Chen, Min, and Jeroen Tromp. 2007. “Theoretical and Numerical Investigations of Global and Regional Seismic Wave Propagation in Weakly Anisotropic Earth Models.” Geophys. J. Int. 168 (3): 1130–52. doi:10.1111/j.1365-246X.2006.03218.x.
Chevrot, S., N. Favier, and D. Komatitsch. 2004. “Shear Wave Splitting in Three-Dimensional Anisotropic Media.” Geophys. J. Int. 159 (2): 711–20. doi:10.1111/j.1365-246X.2004.02432.x.
Cockburn, Bernardo, George E. Karniadakis, and Chi-Wang Shu. 2000. Discontinuous Galerkin Methods: Theory, Computation and Applications. Heidelberg, Germany: Springer-Verlag.
Cohen, G., P. Joly, and N. Tordjman. 1993. “Construction and Analysis of Higher-Order Finite Elements with Mass Lumping for the Wave Equation.” In Proceedings of the Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, edited by R. Kleinman, 152–60. SIAM, Philadelphia, Pennsylvania, USA.
Cohen, Gary. 2002. Higher-Order Numerical Methods for Transient Wave Equations. Berlin, Germany: Springer-Verlag.
De Basabe, J. D., M. K. Sen, and M. F. Wheeler. 2008. “The Interior Penalty Discontinuous Galerkin Method for Elastic Wave Propagation: Grid Dispersion.” Geophys. J. Int. 175 (1): 83–93. doi:10.1111/j.1365-246X.2008.03915.x.
De Basabe, Jonás D., and Mrinal K. Sen. 2007. “Grid Dispersion and Stability Criteria of Some Common Finite-Element Methods for Acoustic and Elastic Wave Equations.” Geophysics 72 (6): T81–95. doi:10.1190/1.2785046.
———. 2010. “Stability of the High-Order Finite Elements for Acoustic or Elastic Wave Propagation with High-Order Time Stepping.” Geophys. J. Int. 181 (1): 577–90. doi:10.1111/j.1365-246X.2010.04536.x.
Deville, M. O., P. F. Fischer, and E. H. Mund. 2002. High-Order Methods for Incompressible Fluid Flow. Cambridge, United Kingdom: Cambridge University Press.
Dreger, D. S., and D. V. Helmberger. 1990. “Broadband Modeling of Local Earthquakes.” Bull. Seism. Soc. Am. 80: 1162–79.
Duczek, Sascha, Steffen Liefold, David Schmicker, and Ulrich Gabbert. 2014. “Wave Propagation Analysis Using High-Order Finite Element Methods: Spurious Oscillations Excited by Internal Element Eigenfrequencies.” Technische Mechanik 34: 51–71.
Dumbser, M., and M. Käser. 2006. “An Arbitrary High-Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes-II. The Three-Dimensional Isotropic Case.” Geophys. J. Int. 167 (1): 319–36. doi:10.1111/j.1365-246X.2006.03120.x.
Étienne, V., E. Chaljub, J. Virieux, and N. Glinsky. 2010. “An (hp)-Adaptive Discontinuous Galerkin Finite-Element Method for 3-D Elastic Wave Modelling.” Geophys. J. Int. 183 (2): 941–62. doi:10.1111/j.1365-246X.2010.04764.x.
Faccioli, E., F. Maggio, R. Paolucci, and A. Quarteroni. 1997. “2D and 3D Elastic Wave Propagation by a Pseudo-Spectral Domain Decomposition Method.” J. Seismol. 1: 237–51.
Falk, Richard S., and Gerard R. Richter. 1999. “Explicit Finite Element Methods for Symmetric Hyperbolic Equations.” SIAM Journal on Numerical Analysis 36 (3): 935–52. doi:10.1137/S0036142997329463.
Favier, N., S. Chevrot, and D. Komatitsch. 2004. “Near-Field Influences on Shear Wave Splitting and Traveltime Sensitivity Kernels.” Geophys. J. Int. 156 (3): 467–82. doi:10.1111/j.1365-246X.2004.02178.x.
Fichtner, Andreas, Heiner Igel, Hans-Peter Bunge, and Brian L. N. Kennett. 2009. “Simulation and Inversion of Seismic Wave Propagation on Continental Scales Based on a Spectral-Element Method.” Journal of Numerical Analysis, Industrial and Applied Mathematics 4 (1-2): 11–22.
Giraldo, F. X., J. S. Hesthaven, and T. Warburton. 2002. “Nodal High-Order Discontinuous Galerkin Methods for the Spherical Shallow Water Equations.” J. Comput. Phys. 181 (2): 499–525. doi:10.1006/jcph.2002.7139.
Godinho, L., P. Amado Mendes, A. Tadeu, A. Cadena-Isaza, C. Smerzini, F. J. Sánchez-Sesma, R. Madec, and Dimitri Komatitsch. 2009. “Numerical Simulation of Ground Rotations Along 2D Topographical Profiles Under the Incidence of Elastic Plane Waves.” Bull. Seism. Soc. Am. 99 (2B): 1147–61. doi:10.1785/0120080096.
Gropp, W., E. Lusk, and A. Skjellum. 1994. Using MPI, Portable Parallel Programming with the Message-Passing Interface. Cambridge, USA: MIT Press.
Grote, Marcus J., Anna Schneebeli, and Dominik Schötzau. 2006. “Discontinuous Galerkin Finite Element Method for the Wave Equation.” SIAM Journal on Numerical Analysis 44 (6): 2408–31. doi:10.1137/05063194X.
Harms, J., J.-P. Ampuero, M. Barsuglia, E. Chassande-Mottin, J.-P. Montagner, S. N. Somala, and B. F. Whiting. 2015. “Transient Gravity Perturbations Induced by Earthquake Rupture.” Geophys. J. Int. 201 (3): 1416–25. doi:10.1093/gji/ggv090.
Hauksson, E. 2000. “Crustal Structure and Seismicity Distribution Adjacent to the Pacific and North America Plate Boundary in Southern California.” J. Geophys. Res. 105: 13875–903.
Hu, Fang Q., M. Y. Hussaini, and Patrick Rasetarinera. 1999. “An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems.” J. Comput. Phys. 151 (2): 921–46. doi:10.1006/jcph.1999.6227.
Jensen, F. B., W. A. Kuperman, M. Porter, and H. Schmidt. 2011. Computational Ocean Acoustics. 2nd ed. Berlin, Germany: Springer-Verlag.
Ji, Chen, Seiji Tsuboi, Dimitri Komatitsch, and Jeroen Tromp. 2005. “Rayleigh-Wave Multipathing Along the West Coast of North America.” Bull. Seism. Soc. Am. 95 (6): 2115–24. doi:10.1785/0120040180.
Johnson, C., and J. Pitkäranta. 1986. “An Analysis of the Discontinuous Galerkin Method for a Scalar Hyperbolic Equation.” Math. Comp. 46: 1–26. doi:10.1090/S0025-5718-1986-0815828-4.
Komatitsch, D., and J. Tromp. 1999. “Introduction to the Spectral-Element Method for 3-D Seismic Wave Propagation.” Geophys. J. Int. 139 (3): 806–22. doi:10.1046/j.1365-246x.1999.00967.x.
———. 2002a. “Spectral-Element Simulations of Global Seismic Wave Propagation-I. Validation.” Geophys. J. Int. 149 (2): 390–412. doi:10.1046/j.1365-246X.2002.01653.x.
———. 2002b. “Spectral-Element Simulations of Global Seismic Wave Propagation-II. 3-D Models, Oceans, Rotation, and Self-Gravitation.” Geophys. J. Int. 150 (1): 303–18. doi:10.1046/j.1365-246X.2002.01716.x.
Komatitsch, D., and J. P. Vilotte. 1998. “The Spectral-Element Method: An Efficient Tool to Simulate the Seismic Response of 2D and 3D Geological Structures.” Bull. Seism. Soc. Am. 88 (2): 368–92.
Komatitsch, D., R. Martin, J. Tromp, M. A. Taylor, and B. A. Wingate. 2001. “Wave Propagation in 2-D Elastic Media Using a Spectral Element Method with Triangles and Quadrangles.” J. Comput. Acoust. 9 (2): 703–18. doi:10.1142/S0218396X01000796.
Komatitsch, D., J. Ritsema, and J. Tromp. 2002. “The Spectral-Element Method, Beowulf Computing, and Global Seismology.” Science 298 (5599): 1737–42. doi:10.1126/science.1076024.
Komatitsch, D., L. P. Vinnik, and S. Chevrot. 2010. “SHdiff/SVdiff Splitting in an Isotropic Earth.” J. Geophys. Res. 115 (B7): B07312. doi:10.1029/2009JB006795.
Komatitsch, Dimitri. 1997. “Méthodes Spectrales et Éléments Spectraux Pour L’équation de L’élastodynamique 2D et 3D En Milieu Hétérogène (Spectral and Spectral-Element Methods for the 2D and 3D Elastodynamics Equations in Heterogeneous Media).” PhD thesis, Paris, France: Institut de Physique du Globe.
———. 2011. “Fluid-Solid Coupling on a Cluster of GPU Graphics Cards for Seismic Wave Propagation.” C. R. Acad. Sci., Ser. IIb Mec. 339: 125–35. doi:10.1016/j.crme.2010.11.007.
Komatitsch, Dimitri, and Roland Martin. 2007. “An Unsplit Convolutional Perfectly Matched Layer Improved at Grazing Incidence for the Seismic Wave Equation.” Geophysics 72 (5): SM155–M167. doi:10.1190/1.2757586.
Komatitsch, Dimitri, Gordon Erlebacher, Dominik Göddeke, and David Michéa. 2010. “High-Order Finite-Element Seismic Wave Propagation Modeling with MPI on a Large GPU Cluster.” J. Comput. Phys. 229 (20): 7692–7714. doi:10.1016/j.jcp.2010.06.024.
Komatitsch, Dimitri, Jesús Labarta, and David Michéa. 2008. “A Simulation of Seismic Wave Propagation at High Resolution in the Inner Core of the Earth on 2166 Processors of MareNostrum.” Lecture Notes in Computer Science 5336: 364–77.
Komatitsch, Dimitri, Qinya Liu, Jeroen Tromp, Peter Süss, Christiane Stidham, and John H. Shaw. 2004. “Simulations of Ground Motion in the Los Angeles Basin Based Upon the Spectral-Element Method.” Bull. Seism. Soc. Am. 94 (1): 187–206. doi:10.1785/0120030077.
Komatitsch, Dimitri, David Michéa, and Gordon Erlebacher. 2009. “Porting a High-Order Finite-Element Earthquake Modeling Application to NVIDIA Graphics Cards Using CUDA.” Journal of Parallel and Distributed Computing 69 (5): 451–60. doi:10.1016/j.jpdc.2009.01.006.
Komatitsch, Dimitri, Seiji Tsuboi, Chen Ji, and Jeroen Tromp. 2003. “A 14.6 Billion Degrees of Freedom, 5 Teraflops, 2.5 Terabyte Earthquake Simulation on the Earth Simulator.” In Proceedings of the SC’03 ACM/IEEE Conference on Supercomputing, 4–11. Phoenix, Arizona, USA: ACM. doi:10.1145/1048935.1050155.
Komatitsch, Dimitri, Zhinan Xie, Ebru Bozdağ, Elliott Sales de Andrade, Daniel Peter, Qinya Liu, and Jeroen Tromp. 2016. “Anelastic Sensitivity Kernels with Parsimonious Storage for Adjoint Tomography and Full Waveform Inversion.” Geophys. J. Int. 206 (3): 1467–78. doi:10.1093/gji/ggw224.
Kopriva, D. A. 2006. “Metric Identities and the Discontinuous Spectral Element Method on Curvilinear Meshes.” Journal of Scientific Computing 26 (3): 301–27. doi:10.1007/s10915-005-9070-8.
Kopriva, D. A., S. L. Woodruff, and M. Y. Hussaini. 2002. “Computation of Electromagnetic Scattering with a Non-Conforming Discontinuous Spectral Element Method.” Int. J. Numer. Methods Eng. 53 (1): 105–22. doi:10.1002/nme.394.
Krishnan, Swaminathan, Chen Ji, Dimitri Komatitsch, and Jeroen Tromp. 2006a. “Case Studies of Damage to Tall Steel Moment-Frame Buildings in Southern California During Large San Andreas Earthquakes.” Bull. Seism. Soc. Am. 96 (4A): 1523–37. doi:10.1785/0120050145.
———. 2006b. “Performance of Two 18-Story Steel Moment-Frame Buildings in Southern California During Two Large Simulated San Andreas Earthquakes.” Earthquake Spectra 22 (4): 1035–61. doi:10.1193/1.2360698.
Lee, Shiann Jong, Yu Chang Chan, Dimitri Komatitsch, Bor Shouh Huang, and Jeroen Tromp. 2009. “Effects of Realistic Surface Topography on Seismic Ground Motion in the Yangminshan Region of Taiwan Based Upon the Spectral-Element Method and LiDAR DTM.” Bull. Seism. Soc. Am. 99 (2A): 681–93. doi:10.1785/0120080264.
Lee, Shiann Jong, How Wei Chen, Qinya Liu, Dimitri Komatitsch, Bor Shouh Huang, and Jeroen Tromp. 2008. “Three-Dimensional Simulations of Seismic Wave Propagation in the Taipei Basin with Realistic Topography Based Upon the Spectral-Element Method.” Bull. Seism. Soc. Am. 98 (1): 253–64. doi:10.1785/0120070033.
Lee, Shiann Jong, Dimitri Komatitsch, Bor Shouh Huang, and Jeroen Tromp. 2009. “Effects of Topography on Seismic Wave Propagation: An Example from Northern Taiwan.” Bull. Seism. Soc. Am. 99 (1): 314–25. doi:10.1785/0120080020.
Legay, A., H. W. Wang, and T. Belytschko. 2005. “Strong and Weak Arbitrary Discontinuities in Spectral Finite Elements.” Int. J. Numer. Methods Eng. 64 (8): 991–1008. doi:10.1002/nme.1388.
Lesaint, P., and P. A. Raviart. 1974. “On a Finite-Element Method for Solving the Neutron Transport Equation (Proc. Symposium, Mathematical Research Center).” In Mathematical Aspects of Finite Elements in Partial Differential Equations, edited by Univ. of Wisconsin-Madison, 33:89–123. New York, USA: Academic Press.
Liu, Q., and J. Tromp. 2008. “Finite-Frequency Sensitivity Kernels for Global Seismic Wave Propagation Based Upon Adjoint Methods.” Geophys. J. Int. 174 (1): 265–86. doi:10.1111/j.1365-246X.2008.03798.x.
Liu, Qinya, and Jeroen Tromp. 2006. “Finite-Frequency Kernels Based on Adjoint Methods.” Bull. Seism. Soc. Am. 96 (6): 2383–97. doi:10.1785/0120060041.
Lovely, P., J. Shaw, Q. Liu, and J. Tromp. 2006. “A Structural Model of the Salton Trough and Its Implications for Seismic Hazard.” Bull. Seism. Soc. Am. 96: 1882–96.
Maday, Y., and A. T. Patera. 1989. “Spectral-Element Methods for the Incompressible Navier-Stokes Equations.” In State of the Art Survey in Computational Mechanics, 71–143.
Madec, Ronan, Dimitri Komatitsch, and Julien Diaz. 2009. “Energy-Conserving Local Time Stepping Based on High-Order Finite Elements for Seismic Wave Propagation Across a Fluid-Solid Interface.” Comput. Model. Eng. Sci. 49 (2): 163–89.
Martin, Roland, and Dimitri Komatitsch. 2009. “An Unsplit Convolutional Perfectly Matched Layer Technique Improved at Grazing Incidence for the Viscoelastic Wave Equation.” Geophys. J. Int. 179 (1): 333–44. doi:10.1111/j.1365-246X.2009.04278.x.
Martin, Roland, Dimitri Komatitsch, and Abdelaâziz Ezziani. 2008. “An Unsplit Convolutional Perfectly Matched Layer Improved at Grazing Incidence for Seismic Wave Equation in Poroelastic Media.” Geophysics 73 (4): T51–61. doi:10.1190/1.2939484.
Martin, Roland, Dimitri Komatitsch, and Stephen D. Gedney. 2008. “A Variational Formulation of a Stabilized Unsplit Convolutional Perfectly Matched Layer for the Isotropic or Anisotropic Seismic Wave Equation.” Comput. Model. Eng. Sci. 37 (3): 274–304. doi:10.3970/cmes.2008.037.274.
Martin, Roland, Dimitri Komatitsch, Céline Blitz, and Nicolas Le Goff. 2008. “Simulation of Seismic Wave Propagation in an Asteroid Based Upon an Unstructured MPI Spectral-Element Method: Blocking and Non-Blocking Communication Strategies.” Lecture Notes in Computer Science 5336: 350–63.
Martin, Roland, Dimitri Komatitsch, Stephen D. Gedney, and Émilien Bruthiaux. 2010. “A High-Order Time and Space Formulation of the Unsplit Perfectly Matched Layer for the Seismic Wave Equation Using Auxiliary Differential Equations (ADE-PML).” Comput. Model. Eng. Sci. 56 (1): 17–42. doi:10.3970/cmes.2010.056.017.
Melvin, Thomas, Andrew Staniforth, and John Thuburn. 2012. “Dispersion Analysis of the Spectral-Element Method.” Quarterly Journal of the Royal Meteorological Society 138 (668): 1934–47. doi:10.1002/qj.1906.
Mercerat, E. D., J. P. Vilotte, and F. J. Sánchez-Sesma. 2006. “Triangular Spectral-Element Simulation of Two-Dimensional Elastic Wave Propagation Using Unstructured Triangular Grids.” Geophys. J. Int. 166 (2): 679–98.
Michéa, David, and Dimitri Komatitsch. 2010. “Accelerating a 3D Finite-Difference Wave Propagation Code Using GPU Graphics Cards.” Geophys. J. Int. 182 (1): 389–402. doi:10.1111/j.1365-246X.2010.04616.x.
Monk, Peter, and Gerard R. Richter. 2005. “A Discontinuous Galerkin Method for Linear Symmetric Hyperbolic Systems in Inhomogeneous Media.” Journal of Scientific Computing 22-23 (1-3): 443–77. doi:10.1007/s10915-004-4132-5.
Monteiller, Vadim, Sébastien Chevrot, Dimitri Komatitsch, and Nobuaki Fuji. 2013. “A Hybrid Method to Compute Short Period Synthetic Seismograms of Teleseismic Body Waves in a 3-D Regional Model.” Geophys. J. Int. 192 (1): 230–47. doi:10.1093/gji/ggs006.
Monteiller, Vadim, Sébastien Chevrot, Dimitri Komatitsch, and Yi Wang. 2015. “Three-Dimensional Full Waveform Inversion of Short-Period Teleseismic Wavefields Based Upon the SEM-DSM Hybrid Method.” Geophys. J. Int. 202 (2): 811–27. doi:10.1093/gji/ggv189.
Morency, C., Y. Luo, and J. Tromp. 2009. “Finite-Frequency Kernels for Wave Propagation in Porous Media Based Upon Adjoint Methods.” Geophys. J. Int. 179: 1148–68. doi:10.1111/j.1365-246X.2009.04332.
Oliveira, S. P., and G. Seriani. 2011. “Effect of Element Distortion on the Numerical Dispersion of Spectral-Element Methods.” Communications in Computational Physics 9 (4): 937–58.
Pacheco, P. S. 1997. Parallel Programming with MPI. San Francisco, USA: Morgan Kaufmann Press.
Patera, Anthony T. 1984. “A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion.” J. Comput. Phys. 54 (3): 468–88. doi:10.1016/0021-9991(84)90128-1.
Peter, Daniel, Dimitri Komatitsch, Yang Luo, Roland Martin, Nicolas Le Goff, Emanuele Casarotti, Pieyre Le Loher, et al. 2011. “Forward and Adjoint Simulations of Seismic Wave Propagation on Fully Unstructured Hexahedral Meshes.” Geophys. J. Int. 186 (2): 721–39. doi:10.1111/j.1365-246X.2011.05044.x.
Priolo, E., J. M. Carcione, and G. Seriani. 1994. “Numerical Simulation of Interface Waves by High-Order Spectral Modeling Techniques.” J. Acoust. Soc. Am. 95 (2): 681–93.
Puente, J. de la, J. P. Ampuero, and M. Käser. 2009. “Dynamic Rupture Modeling on Unstructured Meshes Using a Discontinuous Galerkin Method.” J. Geophys. Res. 114: B10302. doi:10.1029/2008JB006271.
Reed, W. H., and T. R. Hill. 1973. Triangular Mesh Methods for the Neutron Transport Equation. LA-UR-73-479. Los Alamos, USA: Los Alamos Scientific Laboratory.
Ritsema, J., L. A. Rivera, D. Komatitsch, J. Tromp, and H. J. van Heijst. 2002. “The Effects of Crust and Mantle Heterogeneity on PP/P and SS/S Amplitude Ratios.” Geophys. Res. Lett. 29 (10): 1430. doi:10.1029/2001GL013831.
Rivière, B., and M. F. Wheeler. 2003. “Discontinuous Finite Element Methods for Acoustic and Elastic Wave Problems.” Contemporary Mathematics 329: 271–82.
Savage, Brian, Dimitri Komatitsch, and Jeroen Tromp. 2010. “Effects of 3D Attenuation on Seismic Wave Amplitude and Phase Measurements.” Bull. Seism. Soc. Am. 100 (3): 1241–51. doi:10.1785/0120090263.
Seriani, G., and S. P. Oliveira. 2008. “Dispersion Analysis of Spectral-Element Methods for Elastic Wave Propagation.” Wave Motion 45: 729–44. doi:10.1016/j.wavemoti.2007.11.007.
Seriani, G., and E. Priolo. 1994. “A Spectral Element Method for Acoustic Wave Simulation in Heterogeneous Media.” Finite Elements in Analysis and Design 16: 337–48.
Seriani, G., E. Priolo, and A. Pregarz. 1995. “Modelling Waves in Anisotropic Media by a Spectral Element Method.” In Proceedings of the Third International Conference on Mathematical and Numerical Aspects of Wave Propagation, edited by G. Cohen, 289–98. SIAM, Philadephia, PA.
Seriani, Géza, and Saulo P. Oliveira. 2007. “Optimal Blended Spectral-Element Operators for Acoustic Wave Modeling.” Geophysics 72 (5): SM95–M106. doi:10.1190/1.2750715.
Stupazzini, M., R. Paolucci, and H. Igel. 2009. “Near-Fault Earthquake Ground-Motion Simulation in the Grenoble Valley by a High-Performance Spectral Element Code.” Bull. Seismol. Soc. Am. 99 (1): 286–301.
Süss, M. P., and J. H. Shaw. 2003. “P Wave Seismic Velocity Structure Derived from Sonic Logs and Industry Reflection Data in the Los Angeles Basin, California.” J. Geophys. Res. 108 (B3): 2170. doi:10.1029/2001JB001628.
Tago, J., V. M. Cruz-Atienza, V. Étienne, J. Virieux, M. Benjemaa, and F. J. Sánchez-Sesma. 2010. “3D Dynamic Rupture with Anelastic Wave Propagation Using an Hp-Adaptive Discontinuous Galerkin Method.” In Abstract S51A-1915 Presented at 2010 AGU Fall Meeting. San Francisco, California, USA.
Taylor, M. A., and B. A. Wingate. 2000. “A Generalized Diagonal Mass Matrix Spectral Element Method for Non-Quadrilateral Elements.” Appl. Num. Math. 33: 259–65.
Teukolsky, Saul A. 2015. “Short Note on the Mass Matrix for Gauss-Lobatto Grid Points.” J. Comput. Phys. 283: 408–13. doi:10.1016/j.jcp.2014.12.012.
Tong, Ping, Chin-Wu Chen, Dimitri Komatitsch, Piero Basini, and Qinya Liu. 2014. “High-Resolution Seismic Array Imaging Based on a SEM-FK Hybrid Method.” Geophys. J. Int. 197 (1): 369–95. doi:10.1093/gji/ggt508.
Tong, Ping, Dimitri Komatitsch, Tai-Lin Tseng, Shu-Huei Hung, Chin-Wu Chen, Piero Basini, and Qinya Liu. 2014. “A 3-D Spectral-Element and Frequency-Wave Number Hybrid Method for High-Resolution Seismic Array Imaging.” Geophys. Res. Lett. 41 (20): 7025–34. doi:10.1002/2014GL061644.
Tromp, J., and D. Komatitsch. 2000. “Spectral-Element Simulations of Wave Propagation in a Laterally Homogeneous Earth Model.” In Problems in Geophysics for the New Millennium, edited by E. Boschi, G. Ekström, and A. Morelli, 351–72. Roma, Italy: INGV.
Tromp, Jeroen, Dimitri Komatitsch, and Qinya Liu. 2008. “Spectral-Element and Adjoint Methods in Seismology.” Communications in Computational Physics 3 (1): 1–32.
Tromp, Jeroen, Dimitri Komatitsch, Vala Hjörleifsdóttir, Qinya Liu, Hejun Zhu, Daniel Peter, Ebru Bozdağ, et al. 2010. “Near Real-Time Simulations of Global CMT Earthquakes.” Geophys. J. Int. 183 (1): 381–89. doi:10.1111/j.1365-246X.2010.04734.x.
Tromp, Jeroen, Carl Tape, and Qinya Liu. 2005. “Seismic Tomography, Adjoint Methods, Time Reversal and Banana-Doughnut Kernels.” Geophys. J. Int. 160 (1): 195–216. doi:10.1111/j.1365-246X.2004.02453.x.
Tsuboi, Seiji, Dimitri Komatitsch, Chen Ji, and Jeroen Tromp. 2003. “Broadband Modeling of the 2002 Denali Fault Earthquake on the Earth Simulator.” Phys. Earth Planet. Inter. 139 (3-4): 305–13. doi:10.1016/j.pepi.2003.09.012.
Vai, R., J. M. Castillo-Covarrubias, F. J. Sánchez-Sesma, D. Komatitsch, and J. P. Vilotte. 1999. “Elastic Wave Propagation in an Irregularly Layered Medium.” Soil Dynamics and Earthquake Engineering 18 (1): 11–18. doi:10.1016/S0267-7261(98)00027-X.
Virieux, J., and S. Operto. 2009. “An Overview of Full-Waveform Inversion in Exploration Geophysics.” Geophysics 74 (6): WCC1–C26. doi:10.1190/1.3238367.
Wang, Yi, Sébastien Chevrot, Vadim Monteiller, Dimitri Komatitsch, Frédéric Mouthereau, Gianreto Manatschal, Matthieu Sylvander, et al. 2016. “The Deep Roots of the Western Pyrenees Revealed by Full Waveform Inversion of Teleseismic (P) Waves.” Geology 44 (6): 475–78. doi:10.1130/G37812.1.
Wijk, Kasper van, Dimitri Komatitsch, John A. Scales, and Jeroen Tromp. 2004. “Analysis of Strong Scattering at the Micro-Scale.” J. Acoust. Soc. Am. 115 (3): 1006–11. doi:10.1121/1.1647480.
Wilcox, Lucas C., Georg Stadler, Carsten Burstedde, and Omar Ghattas. 2010. “A High-Order Discontinuous Galerkin Method for Wave Propagation Through Coupled Elastic-Acoustic Media.” J. Comput. Phys. 229 (24): 9373–96. doi:10.1016/j.jcp.2010.09.008.
Wingate, B. A., and J. P. Boyd. 1996. “Spectral Element Methods on Triangles for Geophysical Fluid Dynamics Problems.” In Proceedings of the Third International Conference on Spectral and High-Order Methods, edited by A. V. Ilin and L. R. Scott, 305–14. Houston, Texas: Houston J. Mathematics.
Xie, Zhinan, Dimitri Komatitsch, Roland Martin, and René Matzen. 2014. “Improved Forward Wave Propagation and Adjoint-Based Sensitivity Kernel Calculations Using a Numerically Stable Finite-Element PML.” Geophys. J. Int. 198 (3): 1714–47. doi:10.1093/gji/ggu219.
Xie, Zhinan, René Matzen, Paul Cristini, Dimitri Komatitsch, and Roland Martin. 2016. “A Perfectly Matched Layer for Fluid-Solid Problems: Application to Ocean-Acoustics Simulations with Solid Ocean Bottoms.” J. Acoust. Soc. Am. 140 (1): 165–75. doi:10.1121/1.4954736.
Zhu, L., and H. Kanamori. 2000. “Moho Depth Variation in Southern California from Teleseismic Receiver Functions.” J. Geophys. Res. 105: 2969–80.
This documentation has been automatically generated by pandoc based on the User manual (LaTeX version) in folder doc/USER_MANUAL/ (Mar 5, 2022)
Development wiki for SPECFEM3D
Development wiki
- Home
- Development plan
- Best Practices
- Using Git for SPECFEM
- Advanced Git Topics
- Versioning Conventions
- Merging Development Branches into Master
User manual
- 01_introduction
- 02_getting_started
- 03_mesh_generation
- 04_creating_databases
- 05_running_the_solver
- 06_fault_sources
- 07_adjoint_simulations
- 08_doing_tomography
- 08b_performing_full_waveform_inversion_FWI_or_source_inversions
- 09_noise_simulations
- 10_gravity_calculations
- 11_graphics
- 12_running_scheduler
- 13_changing_the_model
- 14_post_processing
- 15_informations_for_developers
- A_reference_frame
- B_channel_codes
- C_troubleshooting
- D_license
- authors
- bug_reports
- copyright_and_version
- features
- manual_SPECFEM3D_Cartesian
- notes_and_acknowledgement
- sponsors