-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathfigure3.py
291 lines (249 loc) · 11.8 KB
/
figure3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from tkinter import font
import matplotlib.pyplot as plt
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import pickle
from math import log
from matplotlib.ticker import FormatStrFormatter
import random
import numpy as np
ticklabelpad = mpl.rcParams['xtick.major.pad']
# seed=42
parameter_num = {
"RTE":
{
'FedLR': 0.9,
'FedPF': 10.3,
'FedAP': 3.0,
'FedBF': 0.7,
'FedFT': 124.7,
},
"MNLI":
{
'FedLR': 0.9,
'FedPF': 10.3,
'FedAP': 3.0,
'FedBF': 0.7,
'FedFT': 124.7,
},
# "MRPC":
# {
# 'FedLR': 0.9,
# 'FedPF': 10.3,
# 'FedAP': 1.201,
# 'FedBF': 0.7,
# 'FedFT': 124.7,
# },
# "SST-2":
# {
# 'FedLR': 0.9,
# 'FedPF': 10.3,
# 'FedAP': 3.0,
# 'FedBF': 0.7,
# 'FedFT': 124.7,
# },
# "QNLI":
# {
# 'FedLR': 0.9,
# 'FedPF': 10.3,
# 'FedAP': 1.201,
# 'FedBF': 0.7,
# 'FedFT': 124.7,
# },
# "QQP":
# {
# 'FedLR': 0.9,
# 'FedPF': 10.3,
# 'FedAP': 3.0,
# 'FedBF': 0.7,
# 'FedFT': 124.7,
# },
}
log_file = {
"RTE":
{
"FedLR": ["./main_logs/lora_s42_roberta_rte.eval.log", "./main_logs/lora_s2_roberta_rte.eval.log", "./main_logs/lora_s3_roberta_rte.eval.log", "./main_logs/lora_s4_roberta_rte.eval.log", "./main_logs/lora_s5_roberta_rte.eval.log"],
"FedPF": ["./main_logs/prefix_s42_roberta_rte.eval.log", "./main_logs/prefix_s2_roberta_rte.eval.log", "./main_logs/prefix_s3_roberta_rte.eval.log", "./main_logs/prefix_s4_roberta_rte.eval.log", "./main_logs/prefix_s5_roberta_rte.eval.log"],
"FedAP": ["./main_logs/adapter_s42_roberta_rte.eval.log", "./main_logs/adapter_s2_roberta_rte.eval.log", "./main_logs/adapter_s3_roberta_rte.eval.log", "./main_logs/adapter_s4_roberta_rte.eval.log", "./main_logs/adapter_s5_roberta_rte.eval.log"],
"FedBF": ["./main_logs/bitfit_s42_roberta_rte.eval.log", "./main_logs/bitfit_s2_roberta_rte.eval.log", "./main_logs/bitfit_s3_roberta_rte.eval.log", "./main_logs/bitfit_s4_roberta_rte.eval.log", "./main_logs/bitfit_s5_roberta_rte.eval.log"],
"FedFT": ["./main_logs/fine-tuning_s42_roberta_rte.eval.log", "./main_logs/fine-tuning_s2_roberta_rte.eval.log", "./main_logs/fine-tuning_s3_roberta_rte.eval.log", "./main_logs/fine-tuning_s4_roberta_rte.eval.log", "./main_logs/fine-tuning_s5_roberta_rte.eval.log"]
},
# "MNLI":
# {
# "FedLR": ["./main_logs/lora_s42_roberta_mnli.eval.log", "./main_logs/lora_s2_roberta_mnli.eval.log", "./main_logs/lora_s3_roberta_mnli.eval.log", "./main_logs/lora_s4_roberta_mnli.eval.log", "./main_logs/lora_s5_roberta_mnli.eval.log"],
# "FedPF": ["./main_logs/prefix_s42_roberta_mnli.eval.log", "./main_logs/prefix_s2_roberta_mnli.eval.log", "./main_logs/prefix_s3_roberta_mnli.eval.log", "./main_logs/prefix_s4_roberta_mnli.eval.log", "./main_logs/prefix_s5_roberta_mnli.eval.log"],
# "FedAP": ["./main_logs/adapter_s42_roberta_mnli.eval.log", "./main_logs/adapter_s2_roberta_mnli.eval.log", "./main_logs/adapter_s3_roberta_mnli.eval.log", "./main_logs/adapter_s4_roberta_mnli.eval.log"],
# "FedBF": ["./main_logs/bitfit_s42_roberta_mnli.eval.log", "./main_logs/bitfit_s2_roberta_mnli.eval.log", "./main_logs/bitfit_s3_roberta_mnli.eval.log", "./main_logs/bitfit_s4_roberta_mnli.eval.log", "./main_logs/bitfit_s5_roberta_mnli.eval.log"],
# "FedFT": ["./main_logs/fine-tuning_s42_roberta_mnli.eval.log", "./main_logs/fine-tuning_s2_roberta_mnli.eval.log", "./main_logs/fine-tuning_s3_roberta_mnli.eval.log", "./main_logs/fine-tuning_s4_roberta_mnli.eval.log"]
# },
"MRPC":
{
"FedLR": ["./main_logs/lora_s42_roberta_mrpc.eval.log", "./main_logs/lora_s2_roberta_mrpc.eval.log", "./main_logs/lora_s3_roberta_mrpc.eval.log", "./main_logs/lora_s4_roberta_mrpc.eval.log", "./main_logs/lora_s5_roberta_mrpc.eval.log"],
"FedPF": ["./main_logs/prefix_s42_roberta_mrpc.eval.log", "./main_logs/prefix_s2_roberta_mrpc.eval.log", "./main_logs/prefix_s3_roberta_mrpc.eval.log", "./main_logs/prefix_s4_roberta_mrpc.eval.log", "./main_logs/prefix_s5_roberta_mrpc.eval.log"],
"FedAP": ["./main_logs/adapter_s42_roberta_mrpc.eval.log", "./main_logs/adapter_s2_roberta_mrpc.eval.log", "./main_logs/adapter_s3_roberta_mrpc.eval.log", "./main_logs/adapter_s4_roberta_mrpc.eval.log", "./main_logs/adapter_s5_roberta_mrpc.eval.log"],
"FedBF": ["./main_logs/bitfit_s42_roberta_mrpc.eval.log", "./main_logs/bitfit_s2_roberta_mrpc.eval.log", "./main_logs/bitfit_s3_roberta_mrpc.eval.log", "./main_logs/bitfit_s4_roberta_mrpc.eval.log", "./main_logs/bitfit_s5_roberta_mrpc.eval.log"],
"FedFT": ["./main_logs/fine-tuning_s42_roberta_mrpc.eval.log", "./main_logs/fine-tuning_s2_roberta_mrpc.eval.log", "./main_logs/fine-tuning_s3_roberta_mrpc.eval.log", "./main_logs/fine-tuning_s4_roberta_mrpc.eval.log", "./main_logs/fine-tuning_s5_roberta_mrpc.eval.log"]
},
# "SST-2":
# {
# "FedLR": "./main_logs/lora_s42_roberta_sst-2.eval.log",
# "FedPF": "./main_logs/prefix_s42_roberta_sst-2.eval.log",
# "FedAP": "./main_logs/adapter_s42_roberta_sst-2.eval.log",
# "FedBF": "./main_logs/bitfit_s42_roberta_sst-2.eval.log",
# "FedFT": "./main_logs/fine-tuning_s42_roberta_sst-2.eval.log",
# },
# "QNLI":
# {
# "FedLR": "./main_logs/lora_s42_roberta_qnli.eval.log",
# "FedPF": "./main_logs/prefix_s42_roberta_qnli.eval.log",
# "FedAP": "./main_logs/adapter_s42_roberta_qnli.eval.log",
# "FedBF": "./main_logs/bitfit_s42_roberta_qnli.eval.log",
# "FedFT": "./main_logs/fine-tuning_s42_roberta_qnli.eval.log",
# },
# "QQP":
# {
# "FedLR": "./main_logs/lora_s42_roberta_qqp.eval.log",
# "FedPF": "./main_logs/prefix_s42_roberta_qqp.eval.log",
# "FedAP": "./main_logs/adapter_s42_roberta_qqp.eval.log",
# "FedBF": "./main_logs/bitfit_s42_roberta_qqp.eval.log",
# "FedFT": "./main_logs/fine-tuning_s42_roberta_qqp.eval.log",
# },
}
data_best_finetuning = {
"RTE": 73.0,
"MRPC": 90.9,
"SST-2": 92.1,
"QNLI": 90.8,
"QQP": 91.1,
"MNLI": 86.0,
}
different_marks = {
'FedLR': '^',
'FedPF': 'D',
'FedAP': 'x',
'FedBF': 'o',
'FedFT': 's',
}
different_line_types = {
'FedLR': '-',
'FedPF': '--',
'FedAP': '-.',
'FedBF': ':',
'FedFT': '-',
}
different_colors = {
'FedLR': 'darkorange',
'FedPF': 'purple',
'FedAP': 'g',
'FedBF': 'r',
'FedFT': 'b',
}
different_colors = {
'FedLR': (9/255.0, 147/255.0, 150/255.0),
'FedPF': (238/255.0, 155/255.0, 0/255.0),
'FedAP': (174/255.0, 32/255.0, 18/255.0),
'FedBF': 'r',
'FedFT': (0/255.0, 48/255.0, 225/255.0),
}
##########################################################
def read_acc_from_log(file_path, metric_name):
with open(file_path, "rb") as this_file:
log_data = pickle.load(this_file)['logs']
this_log_acc = []
for log_index, log_sample in enumerate(log_data):
this_acc = float(log_sample['round_' + str(log_index + 1)][metric_name])
this_log_acc.append(this_acc)
return this_log_acc
def accumulate_max(in_list):
out_list = []
current_max = -99999999
for this_value in in_list:
current_max = max(current_max, this_value)
out_list.append(current_max)
return out_list
def read_log(data_name, tuning_type):
if data_name == "MRPC":
metric_name = "f1"
else:
metric_name = "acc"
# read file
log_path = log_file[data_name][tuning_type]
if isinstance(log_path, list):
log_acc_list = []
for this_log in log_path:
log_acc_list.append(read_acc_from_log(this_log, metric_name))
# use accumulate max
log_acc_list = [accumulate_max(this_l) for this_l in log_acc_list]
this_log_acc = []
this_log_collection = []
for this_index, _ in enumerate(log_acc_list[0]):
this_element = 0.0
this_collection = []
for temp_acc_list in log_acc_list:
this_element += temp_acc_list[this_index]
this_collection.append(temp_acc_list[this_index])
this_log_acc.append(this_element/len(log_acc_list))
this_log_collection.append(this_collection)
else:
this_log_acc = read_acc_from_log(log_path, metric_name)
this_log_collection = None
print(f"Read {data_name} {tuning_type} Round {len(this_log_acc)} log.")
# select data
x_communication = []
y_acc = []
y_max, y_min = [], []
current_best_acc = -1.0
for acc_index, this_acc in enumerate(this_log_acc):
if this_acc > current_best_acc:
current_best_acc = this_acc
y_acc.append(current_best_acc)
x_communication.append(parameter_num[data_name][tuning_type] * (acc_index + 1) * 4 * 10)
if this_log_collection is not None:
this_std = np.std(this_log_collection[acc_index], ddof=0)
y_max.append(y_acc[-1] + this_std)
y_min.append(y_acc[-1] - this_std)
return x_communication, y_acc, metric_name, (y_max, y_min)
##########################################################
font_size = 90
my_nrows = 1
my_ncols = len(log_file.keys()) // my_nrows
fig, axes = plt.subplots(nrows=my_nrows ,ncols=my_ncols, figsize=(80, 30))
fig.subplots_adjust(hspace=0.45)
# iter by task_name
for index, data_name in enumerate(log_file.keys()):
if my_nrows > 1:
this_axes = axes[index // my_ncols][index % my_ncols]
elif my_ncols == 1:
this_axes = axes
else:
this_axes = axes[index]
# iter by tuning type
fine_tuning_best = -1.0
for i_index, tuning_type in enumerate(log_file[data_name].keys()):
# read results from file
x_communication, y_acc, metric_name, (y_max, y_min) = read_log(data_name, tuning_type)
if tuning_type == 'FedFT':
fine_tuning_best = y_acc[-1]
this_axes.plot(x_communication, y_acc, markersize=50, label=tuning_type, linewidth=13, color=different_colors[tuning_type])
if len(y_max) > 0:
this_axes.fill_between(x_communication, y_min, y_max, alpha=0.1, color=different_colors[tuning_type])
plt.setp(this_axes.spines.values(), linewidth=6)
this_axes.spines['top'].set(linewidth=1, color="lightgray")
this_axes.spines['right'].set(linewidth=1, color="lightgray")
this_axes.spines['top'].set_visible(False)
this_axes.spines['right'].set_visible(False)
this_axes.tick_params(width=6, length=15)
this_axes.tick_params(labelsize=font_size, pad=15)
this_axes.set_xlabel("Communication Budget / MB", fontsize=font_size+10, labelpad=10)
if metric_name == "f1":
y_metric = "F1 Score"
else:
y_metric = "Accuracy (%)"
this_axes.set_ylabel(y_metric, fontsize=font_size+10, labelpad=50)
this_axes.set_title(data_name, fontdict={'fontsize': font_size, 'horizontalalignment': 'center'})
this_axes.legend(fontsize=font_size, framealpha=0.9)
this_axes.grid(axis='y', linestyle="-", color="lightgray", linewidth=0.5)
this_axes.axhline(y=data_best_finetuning[data_name]*0.95, c='gray', ls='--', lw=5) # 垂直于y轴的参考线
this_axes.set_xscale('log')
fig.align_labels()
fig.savefig("comm_exp.png")