-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathregistry.py
103 lines (86 loc) · 3.5 KB
/
registry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from datafree.models import classifiers
from torchvision import datasets, transforms as T
from datafree.utils import sync_transforms as sT
from PIL import PngImagePlugin
LARGE_ENOUGH_NUMBER = 100
PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2)
import os
import torch
import torchvision
import datafree
import torch.nn as nn
from PIL import Image
NORMALIZE_DICT = {
'svhn': dict( mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5) ),
'cifar10': dict( mean=(0.4914, 0.4822, 0.4465), std=(0.2023, 0.1994, 0.2010) ),
'cifar100': dict( mean=(0.5071, 0.4867, 0.4408), std=(0.2675, 0.2565, 0.2761) ),
}
MODEL_DICT = {
'wrn16_1': classifiers.wresnet.wrn_16_1,
'wrn16_2': classifiers.wresnet.wrn_16_2,
'wrn40_1': classifiers.wresnet.wrn_40_1,
'wrn40_2': classifiers.wresnet.wrn_40_2,
'resnet50': classifiers.resnet.resnet50,
'resnet18': classifiers.resnet.resnet18,
'resnet34': classifiers.resnet.resnet34,
'vgg8': classifiers.vgg.vgg8_bn,
'vgg11': classifiers.vgg.vgg11_bn,
'vgg13': classifiers.vgg.vgg13_bn,
'mobilenetv2': classifiers.mobilenetv2.mobile_half,
}
def get_model(name: str, num_classes, pretrained=False, **kwargs):
model = MODEL_DICT[name](num_classes=num_classes)
return model
def get_dataset(name: str, data_root: str='data', return_transform=False, split=['A', 'B', 'C', 'D']):
name = name.lower()
data_root = os.path.expanduser( data_root )
if name=='cifar10':
num_classes = 10
train_transform = T.Compose([
#T.Resize((224, 224), Image.BICUBIC),
T.RandomCrop(32, padding=4),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize( **NORMALIZE_DICT[name] ),
])
val_transform = T.Compose([
#T.Resize((224, 224), Image.BICUBIC),
T.ToTensor(),
T.Normalize( **NORMALIZE_DICT[name] ),
])
data_root = os.path.join( data_root, 'CIFAR10' )
train_dst = datasets.CIFAR10(data_root, train=True, download=True, transform=train_transform)
val_dst = datasets.CIFAR10(data_root, train=False, download=True, transform=val_transform)
elif name=='cifar100':
num_classes = 100
train_transform = T.Compose([
T.RandomCrop(32, padding=4),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize( **NORMALIZE_DICT[name] ),
])
val_transform = T.Compose([
T.ToTensor(),
T.Normalize( **NORMALIZE_DICT[name] ),
])
data_root = os.path.join( data_root, 'CIFAR100' )
train_dst = datasets.CIFAR100(data_root, train=True, download=True, transform=train_transform)
val_dst = datasets.CIFAR100(data_root, train=False, download=True, transform=val_transform)
elif name=='svhn':
num_classes = 10
train_transform = T.Compose([
T.ToTensor(),
T.Normalize( **NORMALIZE_DICT[name] ),
])
val_transform = T.Compose([
T.ToTensor(),
T.Normalize( **NORMALIZE_DICT[name] ),
])
data_root = os.path.join( data_root, 'SVHN' )
train_dst = datasets.SVHN(data_root, split='train', download=True, transform=train_transform)
val_dst = datasets.SVHN(data_root, split='test', download=True, transform=val_transform)
else:
raise NotImplementedError
if return_transform:
return num_classes, train_dst, val_dst, train_transform, val_transform
return num_classes, train_dst, val_dst