forked from suprosanna/relationformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
211 lines (180 loc) · 7.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import yaml
import sys
import json
from argparse import ArgumentParser
import numpy as np
from shutil import copyfile
import logging
import ignite
import torch
import torch.nn as nn
from monai.data import DataLoader, DistributedSampler
from dataset_vessel3d import build_vessel_data
from evaluator import build_evaluator
from trainer import build_trainer
from models import build_model
from utils import image_graph_collate
from models.matcher import build_matcher
from losses import SetCriterion
import torch.distributed as dist
import ignite.distributed as igdist
from ignite.contrib.handlers.tqdm_logger import ProgressBar
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from dataloading import data_loading, preprocessing
parser = ArgumentParser()
parser.add_argument('--config',
default=None,
help='config file (.yml) containing the hyper-parameters for training. '
'If None, use the nnU-Net config. See /config for examples.')
parser.add_argument('--resume', default=None, help='checkpoint of the last epoch of the model')
parser.add_argument('--device', default='cuda',
help='device to use for training')
parser.add_argument('--cuda_visible_device', nargs='*', type=int, default=[0,1],
help='list of index where skip conn will be made')
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument("--nproc_per_node", default=None, type=int)
class obj:
def __init__(self, dict1):
self.__dict__.update(dict1)
def dict2obj(dict1):
return json.loads(json.dumps(dict1), object_hook=obj)
def main(rank, args):
# Load the config files
with open(args.config) as f:
print('\n*** Config file')
print(args.config)
config = yaml.load(f, Loader=yaml.FullLoader)
print(config['log']['exp_name'])
config = dict2obj(config)
exp_path = os.path.join(config.TRAIN.SAVE_PATH, "runs", '%s_%d' % (config.log.exp_name, config.DATA.SEED))
if os.path.exists(exp_path) and args.resume == None:
print('ERROR: Experiment folder exist, please change exp name in config file')
else:
try:
os.makedirs(exp_path)
copyfile(args.config, os.path.join(exp_path, "config.yaml"))
except:
pass
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
torch.multiprocessing.set_sharing_strategy('file_system')
# device = torch.device("cuda") if args.device=='cuda' else torch.device("cpu")
args.distributed = False
args.rank = rank # args.rank = int(os.environ["RANK"])
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
args.gpu = int(os.environ["LOCAL_RANK"]) # args.gpu = 'cuda:%d' % args.local_rank
args.world_size = int(os.environ['WORLD_SIZE']) # igdist.get_world_size()
print('Running Distributed:',args.distributed, '; GPU:', args.gpu, '; RANK:', args.rank)
if igdist.get_local_rank() > 0:
# Ensure that only local rank 0 download the dataset
# Thus each node will download a copy of the dataset
igdist.barrier()
#train_ds, val_ds = build_vessel_data(config,
# mode='split',
# )
tfs = transforms.Compose([
preprocessing.NormalizeImage(),
])
train_ds, val_ds = data_loading.get_datasets(
config.DATA.DATA_PATH,
train_transform=tfs,
val_transform=tfs,
train_size=0.8
)
if igdist.get_local_rank() == 0:
# Ensure that only local rank 0 download the dataset
igdist.barrier()
train_loader = igdist.auto_dataloader(train_ds,
batch_size=config.DATA.BATCH_SIZE,
shuffle=True,
num_workers=config.DATA.NUM_WORKERS,
collate_fn=data_loading.afm_collate_fn,
pin_memory=True)
val_loader = igdist.auto_dataloader(val_ds,
batch_size=config.DATA.BATCH_SIZE,
shuffle=False,
num_workers=config.DATA.NUM_WORKERS,
collate_fn=data_loading.afm_collate_fn,
pin_memory=True)
device = torch.device(args.device)
if args.distributed:
torch.cuda.set_device(args.gpu)
# dist.init_process_group(backend='nccl', init_method='env://', world_size=args.world_size, rank=args.rank)
args.rank = igdist.get_rank()
device = torch.device(f"cuda:{args.rank}")
net = build_model(config)
net_wo_dist = net.to(device)
relation_embed = net.relation_embed.to(device)
net = igdist.auto_model(net)
relation_embed = igdist.auto_model(relation_embed)
if args.distributed:
net_wo_dist = net.module
matcher = build_matcher(config)
loss = SetCriterion(config, matcher, relation_embed, num_classes=5)
optimizer = torch.optim.AdamW(
net_wo_dist.parameters(), lr=float(config.TRAIN.BASE_LR), weight_decay=float(config.TRAIN.WEIGHT_DECAY)
)
optimizer = igdist.auto_optim(optimizer)
# LR schedular
iter_per_epoch = len(train_loader)
num_warmup_epoch = float(config.TRAIN.WARMUP_EPOCHS)
warm_lr_init = float(config.TRAIN.WARMUP_LR)
warm_lr_final = float(config.TRAIN.BASE_LR)
num_warmup_iter = num_warmup_epoch * iter_per_epoch
num_after_warmup_iter = config.TRAIN.EPOCHS * iter_per_epoch
def lr_lambda_polynomial(iter: int):
if iter < num_warmup_epoch * iter_per_epoch:
lr_lamda0 = warm_lr_init / warm_lr_final
return lr_lamda0 + (1 - lr_lamda0) * iter / num_warmup_iter
else:
# The total number of epochs is num_warmup_epoch + max_epochs
return (1 - (iter - num_warmup_iter) / num_after_warmup_iter) ** 0.9
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda_polynomial)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
net_wo_dist.load_state_dict(checkpoint['net'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
writer = SummaryWriter(
log_dir=os.path.join(config.TRAIN.SAVE_PATH, "runs", '%s_%d' % (config.log.exp_name, config.DATA.SEED)),
)
evaluator = build_evaluator(
val_loader,
net,
optimizer,
scheduler,
writer,
config,
device
)
trainer = build_trainer(
train_loader,
net,
loss,
optimizer,
scheduler,
writer,
evaluator,
config,
device,
# fp16=args.fp16,
)
if args.resume:
last_epoch = int(scheduler.last_epoch/trainer.state.epoch_length)
evaluator.state.epoch = last_epoch
trainer.state.epoch = last_epoch
trainer.state.iteration = trainer.state.epoch_length * last_epoch
if dist.get_rank()==0:
pbar = ProgressBar()
pbar.attach(trainer, output_transform= lambda x: {'loss': x["loss"]["total"]})
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
trainer.run()
if __name__ == '__main__':
args = parser.parse_args()
if args.cuda_visible_device is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, args.cuda_visible_device))
with igdist.Parallel(backend='nccl', nproc_per_node=args.nproc_per_node) as parallel:
parallel.run(main, args)