-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcontentiousness_pipeline.py
302 lines (248 loc) · 12.3 KB
/
contentiousness_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import argparse
import os
import sys
import itertools
import pandas as pd
from scipy.stats import entropy
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.model_selection import cross_validate, train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import OneHotEncoder
from sklearn.pipeline import Pipeline
from sklearn.base import TransformerMixin
from sklearn.base import BaseEstimator
from sklearn.utils import check_random_state
from sklearn.preprocessing import scale
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.preprocessing import Normalizer
from sklearn.neural_network import MLPClassifier
from utils import *
bert = None
discourse_acts = ['question', 'answer', 'announcement', 'agreement', 'appreciation', 'disagreement', 'negativereaction', 'elaboration', 'humor', 'other']
possible_acts = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
possible_bigrams = itertools.product(possible_acts, possible_acts)
possible_bigrams = list(possible_bigrams)
class ContentiousVectorizer(BaseEstimator, TransformerMixin):
def __init__(self, random_state=None, **kwargs):
self.random_state = random_state
self.tfidf_vectorizer = TfidfVectorizer(min_df=1, max_df=0.95, max_features=1000, stop_words='english')
self.ohe = OneHotEncoder(handle_unknown="ignore")
def fit(self, X, y, **kwargs):
self.random_state_ = check_random_state(self.random_state)
if not isinstance(X, pd.DataFrame):
raise TypeError("X must be a dataframe.")
if "body" not in X.columns and "comments" not in X.columns:
raise ValueError("X must contain body and comments columns.")
corpus = get_corpus(X)
self.tfidf_vectorizer.fit(corpus)
self.ohe.fit(X.subreddit.values.reshape((-1, 1)))
self.locations = set()
for location_list in X.locations:
for location in location_list:
self.locations.add(location)
self.locations = sorted(list(self.locations))
self.coded_locations = set()
for coded_location_list in X.coded_locations:
for coded_location in coded_location_list:
self.coded_locations.add(coded_location)
self.coded_locations = sorted(list(self.coded_locations))
self.comment_liwc = set()
for liwc_dict in X.comment_liwc:
for key in liwc_dict:
self.comment_liwc.add(key)
self.comment_liwc = sorted(list(self.comment_liwc))
self.selftext_liwc = set()
for liwc_dict in X.selftext_liwc:
for key in liwc_dict:
self.selftext_liwc.add(key)
self.selftext_liwc = sorted(list(self.selftext_liwc))
return self
def _vectorize_threads(self, thread, **kwargs):
vectorized_thread = self.tfidf_vectorizer.transform([thread.selftext]).toarray()[0]
vectorized_comments = self.tfidf_vectorizer.transform([comment['body'] for comment in thread.comments]).toarray()
vectorized_comments = vectorized_comments.mean(axis=0)
return vectorized_thread + vectorized_comments
def _vectorize_bigrams(self, bigrams, **kwargs):
vectorized_bigrams = np.zeros(100)
for bigram in bigrams:
vectorized_bigrams[possible_bigrams.index(bigram)] += 1
return vectorized_bigrams
def _vectorize_unigrams(self, thread, **kwargs):
unigrams = np.zeros(10)
unigrams[thread.discourse_act] += 1
for comment in thread.comments:
unigrams[comment['discourse_act']] += 1
return unigrams
def _vectorize_selftext_liwc(self, thread, **kwargs):
liwc = np.zeros(len(self.selftext_liwc))
for key, value in thread.selftext_liwc.items():
liwc[self.selftext_liwc.index(key)] += value
return liwc
def _vectorize_comment_liwc(self, thread, **kwargs):
liwc = np.zeros(len(self.comment_liwc))
for key, value in thread.comment_liwc.items():
liwc[self.comment_liwc.index(key)] += value
return liwc
def get_labels(self):
text_labels = ["Text"] * self.vectorized_text.shape[1]
discourse_labels = discourse_acts
bigram_labels = [f"({discourse_acts[a]},{discourse_acts[b]})" for a, b in possible_bigrams]
location_labels = self.locations
coded_location_labels = self.coded_locations
days_label = ["Days"]
gender_labels = ["Male", "Female"]
prolific_labels = ["Prolific [25]", "Prolific [50]", "Prolific [100]"]
toxicity_labels = ["Title toxicity", "Avg. selftext toxicity", "Avg comment toxicity", "Max. selftext toxicity", "Max. comment toxicity"]
vader_labels = ["Max. selftext VADER", "Min. selftext VADER", "Avg. selftext VADER",
"Max. comment VADER", "Min. comment VADER", "Avg. comment VADER"]
liwc_labels = self.selftext_liwc + self.comment_liwc
# subreddit_labels = self.ohe.categories_ + ["Unknown subreddit"]
return text_labels + discourse_labels + bigram_labels + location_labels + coded_location_labels + days_label + gender_labels + prolific_labels + toxicity_labels + vader_labels + liwc_labels
def transform(self, X, **kwargsv):
if bert is not None:
print("Vectorizing BERT text.")
vectorized_text = np.stack(X.bert)
self.vectorized_text = np.stack(X.bert)
else:
vectorized_text = np.stack(X.apply(self._vectorize_threads, axis=1).values)
self.vectorized_text = np.stack(X.apply(self._vectorize_threads, axis=1).values)
vectorized_unigrams = np.stack(X.apply(self._vectorize_unigrams, axis=1).values)
vectorized_bigrams = np.stack(X.bigrams.apply(self._vectorize_bigrams).values)
vectorized_locations = np.zeros((len(X), len(self.locations)))
for n, locations_list in enumerate(X.locations):
for location in locations_list:
try:
vectorized_locations[n][self.locations.index(location)] += 1
except:
continue
for n in range(len(X)):
for i in range(len(vectorized_locations[n])):
if vectorized_locations[n][i] <= 3:
vectorized_locations[n][i] = 0
vectorized_coded_locations = np.zeros((len(X), len(self.coded_locations)))
for n, coded_locations_list in enumerate(X.coded_locations):
for coded_location in coded_locations_list:
try:
vectorized_coded_locations[n][self.coded_locations.index(coded_location)] += 1
except:
continue
for n in range(len(X)):
for i in range(len(vectorized_coded_locations[n])):
if vectorized_coded_locations[n][i] <= 25:
vectorized_coded_locations[n][i] = 0
days = X.days.apply(lambda x: np.mean(x))
days = days.values.reshape((-1, 1))
male = X.male.values.reshape((-1, 1))
female = X.female.values.reshape((-1, 1))
prolific_25 = X.prolific_25.values.reshape((-1, 1))
prolific_50 = X.prolific_50.values.reshape((-1, 1))
prolific_100 = X.prolific_100.values.reshape((-1, 1))
subreddit = self.ohe.transform(X.subreddit.values.reshape((-1, 1)))
subreddit = subreddit.toarray()
toxicity = X[["title_toxicity", "average_selftext_toxicity", "average_comment_toxicity", "max_selftext_toxicity", "max_comment_toxicity"]].values
vader = X[["max_selftext_vader_score", "min_selftext_vader_score", "avg_selftext_vader_score",
"max_comment_vader_score", "min_comment_vader_score", "avg_comment_vader_score"]]
selftext_liwc = np.stack(X.apply(self._vectorize_selftext_liwc, axis=1).values)
comment_liwc = np.stack(X.apply(self._vectorize_comment_liwc, axis=1).values)
new_X = np.hstack(
(vectorized_text,
vectorized_unigrams,
vectorized_bigrams,
vectorized_locations,
vectorized_coded_locations,
days,
male,
female,
prolific_25,
prolific_50,
prolific_100,
toxicity,
vader,
selftext_liwc,
comment_liwc
)
)
return new_X
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Performs data processing and runs experiments")
parser.add_argument('--topic', action='store', default='abortion', help="The topic to analyze.")
parser.add_argument('--data', action='store', default=None, help="The path to thhe data to process which includes all features.")
parser.add_argument('--bert', action='store', help="The path to the computed BERT representation.")
parser.add_argument('--fraction', action='store', default=1.0, help="The fraction of comments to use (float).", type=float)
parser.add_argument('--outfile', action='store', default="outfile.txt", help="The name of the output file to create.")
args = parser.parse_args()
topic = args.topic
fraction = args.fraction
output_file = args.outfile
COMPLETE_DATA = args.data
BERT_BASELINE = args.bert
for file in os.listdir('keyword_data'):
key = file.split('.')[0]
if key != topic:
continue
print('=== ' + key + ' ===')
df = pd.read_pickle(os.path.join('keyword_data', file))
threads = prep_data(df)
def get_frac(comments):
comments = sorted(comments, key=lambda x: int(x['created_utc']))
frac_idx = int(len(comments) * fraction)
return comments[:frac_idx + 1]
threads.comments = threads.comments.progress_apply(get_frac)
if COMPLETE_DATA:
threads = pd.read_pickle(COMPLETE_DATA)
if BERT_BASELINE:
with open(BERT_BASELINE, 'rb') as f:
bert = pickle.load(f)
threads["bert"] = bert
if "bigrams" not in threads.columns:
import torch
import pickle
# If there's a GPU available...
if torch.cuda.is_available():
# Tell PyTorch to use the GPU.
device = torch.device("cuda")
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(0))
# If not...
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
text_to_discourse_acts(threads)
print(threads.discourse_act)
create_bigrams(threads)
print(threads.bigrams)
threads.to_pickle(f"{topic}_complete.pickle")
import pprint
def run_experiment(name='experiment', random_state=42, C=0.01):
y = threads.label.values
X = threads
vectorizer = ContentiousVectorizer()
if bert is not None:
# model = MLPClassifier(max_iter=10000)
model = LogisticRegression(solver='liblinear', multi_class='auto', max_iter=1000)
else:
model = LogisticRegression(solver='liblinear', multi_class='auto', max_iter=1000)
scaler = Normalizer()
pipeline = Pipeline([
("vectorizer", vectorizer),
("scaler", scaler),
("model", model)])
scores = cross_validate(pipeline, X, y, scoring=['f1', 'precision', 'recall', 'accuracy'])
score_dict = {}
for key, value in scores.items():
score_dict[key] = value.mean()
return score_dict
print("REGULAR")
scores = run_experiment()
pprint.pprint(scores)
counts_cont = threads[threads.label == 1].subreddit.sort_values().value_counts()
counts_noncont = threads[threads.label == 0].subreddit.sort_values().value_counts()
acc, prec, rec, f1 = scores["test_accuracy"], scores["test_precision"], scores["test_recall"], scores["test_f1"]
if not os.path.exists('out'):
os.mkdir('out')
with open(f"out/{output_file}", 'w') as f:
f.write(f"& ${round(acc, 3)}$ & ${round(prec, 3)}$ & ${round(rec, 3)}$ & ${round(f1, 3)}$")