-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
128 lines (91 loc) · 5.41 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import json
import argparse
import time
import re
import random
import numpy as np
import os
import openai
import vertexai
import shutil
from agent import Agent
from initial_prompts import InitialPrompt
from rounds import RoundPrompts
from utils import load_setup, set_constants, randomize_agents_order, setup_hf_model
from save_utils import create_outfiles,save_conversation
parser = argparse.ArgumentParser(description='big negotiation!!')
parser.add_argument('--temp',type=float, default='0')
parser.add_argument('--agents_num',type=int, default=6)
parser.add_argument('--issues_num',type=int, default=5)
parser.add_argument('--rounds_num',type=int, default=24)
parser.add_argument('--window_size',type=int, default=6)
parser.add_argument('--output_dir',type=str, default='./output/')
parser.add_argument('--game_dir',type=str, default='./games_descriptions/base')
parser.add_argument('--exp_name',type=str, default='all_greedy')
#if restart, specifiy output_file to continue on
parser.add_argument('--restart',action='store_true')
parser.add_argument('--output_file',type=str, default='history.json')
#if any gemini model, set this true
parser.add_argument('--gemini',action='store_true')
parser.add_argument('--gemini_project_name',type=str, default='')
parser.add_argument('--gemini_loc',type=str, default='')
parser.add_argument('--gemini_model',type=str, default='gemini-1.0-pro-001')
#if any open-source model, set this true
parser.add_argument('--hf_home',type=str, default='/disk1/')
#for GPTs and using Azure APIs, set this true
parser.add_argument('--azure',action='store_true')
parser.add_argument('--azure_openai_api', default='', help='azure api')
parser.add_argument('--azure_openai_endpoint', default='', help='azure endpoint')
#for GPTs and OpenAI APIs, set key
parser.add_argument('--api_key',type=str, default='', help='OpenAI key, set if using OpenAI APIs')
args = parser.parse_args()
OUTPUT_DIR = os.path.join(args.game_dir,args.output_dir,args.exp_name)
# SET AZURE, OpenAI and GEMINI APIs env variables
set_constants(args)
# Create output file, or load files if restart is given to continue on last experiments
agent_round_assignment, start_round_idx, history = create_outfiles(args,OUTPUT_DIR)
# Dump config file and scores in OUTPUT_DIR
shutil.copyfile(os.path.join(args.game_dir,'config.txt'), os.path.join(OUTPUT_DIR,'config.txt'))
shutil.copytree(os.path.join(args.game_dir,'scores_files'), os.path.join(OUTPUT_DIR,'scores_files'),dirs_exist_ok=True)
# Load setups of agents from config file. File should contain names, file names, roles, incentives, and models
# Also load initial deal file and return a dict of role to agent names
agents,initial_deal,role_to_agent_names = load_setup(args.game_dir, args.agents_num)
# Load HF models
hf_models = {}
# Instaniate agents (initial prompt, round prompt, agent class)
for name in agents.keys():
if 'hf' in agents[name]['model'] and not agents[name]['model'] in hf_models:
hf_models[agents[name]['model']] = setup_hf_model(agents[name]['model'].split('hf_')[-1], cache_dir=args.hf_home)
inital_prompt_agent = InitialPrompt(args.game_dir, name, agents[name]['file_name'],\
role_to_agent_names['p1'], role_to_agent_names['p2'], \
num_issues=args.issues_num, num_agents= args.agents_num, incentive=agents[name]['incentive'])
round_prompt_agent = RoundPrompts(name, role_to_agent_names['p1'],initial_deal,\
incentive=agents[name]['incentive'], window_size=args.window_size,
target_agent=role_to_agent_names.get('target',''),\
rounds_num=args.rounds_num, agents_num=args.agents_num)
agent_instance = Agent(inital_prompt_agent,round_prompt_agent,name,args.temp,model=agents[name]['model'],azure=args.azure,hf_models=hf_models)
agents[name]['instance'] = agent_instance
# If not restart, agent_round_assignment is empty, then randomize order
if not args.restart:
agent_round_assignment = randomize_agents_order(agents, role_to_agent_names['p1'], args.rounds_num)
for round_idx in range(start_round_idx,args.rounds_num):
if round_idx == 0:
#For first round, initialize with p1 suggesting the first deal from 'initial_deal.txt' file
current_agent = role_to_agent_names['p1']
slot_prompt, agent_response = agents[current_agent]['instance'].execute_round(history['content'], round_idx)
history = save_conversation(history, current_agent,agent_response, slot_prompt,round_assign=agent_round_assignment,initial=True)
print('=====')
print(f'{current_agent} response: {agent_response}')
#Continue with rounds
current_agent = agent_round_assignment[round_idx]
slot_prompt, agent_response = agents[current_agent]['instance'].execute_round(history['content'], round_idx)
history = save_conversation(history, current_agent,agent_response, slot_prompt)
print('=====')
print(f'{current_agent} response: {agent_response}')
#Final deal by P1
print(" ==== Deal Suggestions ==== ")
current_agent = role_to_agent_names['p1']
slot_prompt, agent_response = agents[current_agent]['instance'].execute_round(history['content'], args.rounds_num)
history = save_conversation(history, current_agent,agent_response, slot_prompt)
print('=====')
print(f'{current_agent} response: {agent_response}')