-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathrun_training.py
263 lines (214 loc) · 10.4 KB
/
run_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# head dims:512,512,512,512,512,512,512,512,128
# code is basicly:https://github.com/google-research/deep_representation_one_class
from pathlib import Path
from tqdm import tqdm
import datetime
import argparse
import torch
from torch import optim
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from dataset import MVTecAT, Repeat
from cutpaste import CutPasteNormal,CutPasteScar, CutPaste3Way, CutPasteUnion, cut_paste_collate_fn
from model import ProjectionNet
from eval import eval_model
from utils import str2bool
def run_training(data_type="screw",
model_dir="models",
epochs=256,
pretrained=True,
test_epochs=10,
freeze_resnet=20,
learninig_rate=0.03,
optim_name="SGD",
batch_size=64,
head_layer=8,
cutpate_type=CutPasteNormal,
device = "cuda",
workers=8,
size = 256):
torch.multiprocessing.freeze_support()
# TODO: use script params for hyperparameter
# Temperature Hyperparameter currently not used
temperature = 0.2
weight_decay = 0.00003
momentum = 0.9
#TODO: use f strings also for the date LOL
model_name = f"model-{data_type}" + '-{date:%Y-%m-%d_%H_%M_%S}'.format(date=datetime.datetime.now() )
#augmentation:
min_scale = 1
# create Training Dataset and Dataloader
after_cutpaste_transform = transforms.Compose([])
after_cutpaste_transform.transforms.append(transforms.ToTensor())
after_cutpaste_transform.transforms.append(transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]))
train_transform = transforms.Compose([])
#train_transform.transforms.append(transforms.RandomResizedCrop(size, scale=(min_scale,1)))
train_transform.transforms.append(transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1))
# train_transform.transforms.append(transforms.GaussianBlur(int(size/10), sigma=(0.1,2.0)))
train_transform.transforms.append(transforms.Resize((size,size)))
train_transform.transforms.append(cutpate_type(transform = after_cutpaste_transform))
# train_transform.transforms.append(transforms.ToTensor())
train_data = MVTecAT("Data", data_type, transform = train_transform, size=int(size * (1/min_scale)))
dataloader = DataLoader(Repeat(train_data, 3000), batch_size=batch_size, drop_last=True,
shuffle=True, num_workers=workers, collate_fn=cut_paste_collate_fn,
persistent_workers=True, pin_memory=True, prefetch_factor=5)
# Writer will output to ./runs/ directory by default
writer = SummaryWriter(Path("logdirs") / model_name)
# create Model:
head_layers = [512]*head_layer+[128]
num_classes = 2 if cutpate_type is not CutPaste3Way else 3
model = ProjectionNet(pretrained=pretrained, head_layers=head_layers, num_classes=num_classes)
model.to(device)
if freeze_resnet > 0 and pretrained:
model.freeze_resnet()
loss_fn = torch.nn.CrossEntropyLoss()
if optim_name == "sgd":
optimizer = optim.SGD(model.parameters(), lr=learninig_rate, momentum=momentum, weight_decay=weight_decay)
scheduler = CosineAnnealingWarmRestarts(optimizer, epochs)
#scheduler = None
elif optim_name == "adam":
optimizer = optim.Adam(model.parameters(), lr=learninig_rate, weight_decay=weight_decay)
scheduler = None
else:
print(f"ERROR unkown optimizer: {optim_name}")
step = 0
num_batches = len(dataloader)
def get_data_inf():
while True:
for out in enumerate(dataloader):
yield out
dataloader_inf = get_data_inf()
# From paper: "Note that, unlike conventional definition for an epoch,
# we define 256 parameter update steps as one epoch.
for step in tqdm(range(epochs)):
epoch = int(step / 1)
if epoch == freeze_resnet:
model.unfreeze()
batch_embeds = []
batch_idx, data = next(dataloader_inf)
xs = [x.to(device) for x in data]
# zero the parameter gradients
optimizer.zero_grad()
xc = torch.cat(xs, axis=0)
embeds, logits = model(xc)
# embeds = F.normalize(embeds, p=2, dim=1)
# embeds1, embeds2 = torch.split(embeds,x1.size(0),dim=0)
# ip = torch.matmul(embeds1, embeds2.T)
# ip = ip / temperature
# y = torch.arange(0,x1.size(0), device=device)
# loss = loss_fn(ip, torch.arange(0,x1.size(0), device=device))
# calculate label
y = torch.arange(len(xs), device=device)
y = y.repeat_interleave(xs[0].size(0))
loss = loss_fn(logits, y)
# regulize weights:
loss.backward()
optimizer.step()
if scheduler is not None:
scheduler.step(epoch)
writer.add_scalar('loss', loss.item(), step)
# predicted = torch.argmax(ip,axis=0)
predicted = torch.argmax(logits,axis=1)
# print(logits)
# print(predicted)
# print(y)
accuracy = torch.true_divide(torch.sum(predicted==y), predicted.size(0))
writer.add_scalar('acc', accuracy, step)
if scheduler is not None:
writer.add_scalar('lr', scheduler.get_last_lr()[0], step)
# save embed for validation:
if test_epochs > 0 and epoch % test_epochs == 0:
batch_embeds.append(embeds.cpu().detach())
writer.add_scalar('epoch', epoch, step)
# run tests
if test_epochs > 0 and epoch % test_epochs == 0:
# run auc calculation
#TODO: create dataset only once.
#TODO: train predictor here or in the model class itself. Should not be in the eval part
#TODO: we might not want to use the training datat because of droupout etc. but it should give a indecation of the model performance???
# batch_embeds = torch.cat(batch_embeds)
# print(batch_embeds.shape)
model.eval()
roc_auc= eval_model(model_name, data_type, device=device,
save_plots=False,
size=size,
show_training_data=False,
model=model)
#train_embed=batch_embeds)
model.train()
writer.add_scalar('eval_auc', roc_auc, step)
torch.save(model.state_dict(), model_dir / f"{model_name}.tch")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Training defect detection as described in the CutPaste Paper.')
parser.add_argument('--type', default="all",
help='MVTec defection dataset type to train seperated by , (default: "all": train all defect types)')
parser.add_argument('--epochs', default=256, type=int,
help='number of epochs to train the model , (default: 256)')
parser.add_argument('--model_dir', default="models",
help='output folder of the models , (default: models)')
parser.add_argument('--no-pretrained', dest='pretrained', default=True, action='store_false',
help='use pretrained values to initalize ResNet18 , (default: True)')
parser.add_argument('--test_epochs', default=10, type=int,
help='interval to calculate the auc during trainig, if -1 do not calculate test scores, (default: 10)')
parser.add_argument('--freeze_resnet', default=20, type=int,
help='number of epochs to freeze resnet (default: 20)')
parser.add_argument('--lr', default=0.03, type=float,
help='learning rate (default: 0.03)')
parser.add_argument('--optim', default="sgd",
help='optimizing algorithm values:[sgd, adam] (dafault: "sgd")')
parser.add_argument('--batch_size', default=64, type=int,
help='batch size, real batchsize is depending on cut paste config normal cutaout has effective batchsize of 2x batchsize (dafault: "64")')
parser.add_argument('--head_layer', default=1, type=int,
help='number of layers in the projection head (default: 1)')
parser.add_argument('--variant', default="3way", choices=['normal', 'scar', '3way', 'union'], help='cutpaste variant to use (dafault: "3way")')
parser.add_argument('--cuda', default=False, type=str2bool,
help='use cuda for training (default: False)')
parser.add_argument('--workers', default=8, type=int, help="number of workers to use for data loading (default:8)")
args = parser.parse_args()
print(args)
all_types = ['bottle',
'cable',
'capsule',
'carpet',
'grid',
'hazelnut',
'leather',
'metal_nut',
'pill',
'screw',
'tile',
'toothbrush',
'transistor',
'wood',
'zipper']
if args.type == "all":
types = all_types
else:
types = args.type.split(",")
variant_map = {'normal':CutPasteNormal, 'scar':CutPasteScar, '3way':CutPaste3Way, 'union':CutPasteUnion}
variant = variant_map[args.variant]
device = "cuda" if args.cuda else "cpu"
print(f"using device: {device}")
# create modle dir
Path(args.model_dir).mkdir(exist_ok=True, parents=True)
# save config.
with open(Path(args.model_dir) / "run_config.txt", "w") as f:
f.write(str(args))
for data_type in types:
print(f"training {data_type}")
run_training(data_type,
model_dir=Path(args.model_dir),
epochs=args.epochs,
pretrained=args.pretrained,
test_epochs=args.test_epochs,
freeze_resnet=args.freeze_resnet,
learninig_rate=args.lr,
optim_name=args.optim,
batch_size=args.batch_size,
head_layer=args.head_layer,
device=device,
cutpate_type=variant,
workers=args.workers)