Skip to content

Latest commit

 

History

History
36 lines (31 loc) · 1.45 KB

File metadata and controls

36 lines (31 loc) · 1.45 KB

TODOS

  • Rerun model with current best parameters
    • default MS2 loss, predicting target
    • default MS2 loss + MS1 loss, positive only constraint
  • multichannel conditioning signal
  • Look into the data to figure out why there are weird MS1s
  1. ms2 mse loss predicting "noise"
  2. ms2 mse loss predicting target directly
  3. ms2 + ms1 mse loss using best version of 1/2?
  4. Multichannel conditioning signal (repeat 1/2 with new signal?)
  • pseudo extracted spectra?

  • Optimize inference and data types with torchao

  • Add a raw mzML/tdf parser (timsrust_py03) - Josh

  • Obtain another dataset for testing - Josh

    • Potentially use HeLa
    • Orbitrap from 2018
  • Benchmark if time

In Progress

Completed

  • - Dataloaders for MS1+MS2 data
  • Implement base diffusion model from PyTorch
  • Adapter layer for MS data to input dimensions of above
  • Maybe custom training loop
  • Eval code
  • Update dataloader to perform grid split of data - Justin
  • Move sampling.py into codebase - Justin
  • Add learning rate scheduler (apopt from AlphaPeptDeep) - Justin
  • Update Transformer model - Leon
  • Update/Test different loss functions - Leon
  • continue from checkpoint - Saksham
  • Add eval metrics to WandB logging, separate from training