- Rerun model with current best parameters
- default MS2 loss, predicting target
- default MS2 loss + MS1 loss, positive only constraint
- multichannel conditioning signal
- Look into the data to figure out why there are weird MS1s
- ms2 mse loss predicting "noise"
- ms2 mse loss predicting target directly
- ms2 + ms1 mse loss using best version of 1/2?
- Multichannel conditioning signal (repeat 1/2 with new signal?)
-
pseudo extracted spectra?
-
Optimize inference and data types with torchao
-
Add a raw mzML/tdf parser (timsrust_py03) - Josh
-
Obtain another dataset for testing - Josh
- Potentially use HeLa
- Orbitrap from 2018
-
Benchmark if time
- Dataloaders for MS1+MS2 dataImplement base diffusion model from PyTorchAdapter layer for MS data to input dimensions of aboveMaybe custom training loopEval codeUpdate dataloader to perform grid split of data - JustinMove sampling.py into codebase - JustinAdd learning rate scheduler (apopt from AlphaPeptDeep) - JustinUpdate Transformer model - LeonUpdate/Test different loss functions - Leoncontinue from checkpoint - SakshamAdd eval metrics to WandB logging, separate from training