forked from booydar/recurrent-memory-transformer
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_finetuning_scrolls_rmt_decoder.py
440 lines (365 loc) · 21.4 KB
/
run_finetuning_scrolls_rmt_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import json
import logging
import os
import math
import shutil
from pathlib import Path
from itertools import chain
# from dotenv import load_dotenv
import torch
import numpy as np
import datasets
import transformers
from torch.utils.data import DataLoader
from huggingface_hub import hf_hub_download
from lm_experiments_tools.trainer_accelerate import TrainerAccelerate as Trainer, TrainerAccelerateArgs as TrainerArgs
from torch.nn.utils.rnn import pad_sequence
import accelerate
# load_dotenv()
logger_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
logging.basicConfig(format=logger_fmt, level=logging.INFO)
logger = logging.getLogger('')
# if CUDA_VISIBLE_DEVICES is not set make all gpus visible
if os.environ.get('CUDA_VISIBLE_DEVICES', None) is None:
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join([str(i) for i in range(torch.cuda.device_count())])
logger.info(f"CUDA_VISIBLE_DEVICES: {os.environ['CUDA_VISIBLE_DEVICES']}")
# first call to torch.cuda.device_count() sets visible gpus, following calls will not change the result
logger.info(f"CUDA DEVICE COUNT: {torch.cuda.device_count()}")
# import transformers # noqa: E402
from transformers import AutoConfig, AutoTokenizer, HfArgumentParser # noqa: E402
from lm_experiments_tools.utils import get_cls_by_name, get_optimizer, prepare_run # noqa: E402
import lm_experiments_tools.optimizers as optimizers # noqa: E402
# limit # of CPU threads to be used per pytorch worker, otherwise it might use all cpus and throttle gpus
# > 2 fails cause of https://github.com/pytorch/pytorch/issues/56615
# need to upgrade to torch>1.8.1
# torch.set_num_threads(4)
# all gpus set with CUDA_VISIBLE_DEVICES are visible to process, indexing from 0 to ...
parser = HfArgumentParser(TrainerArgs)
parser.add_argument('--task_name', type=str, help='Scrolls task name: "gov_report", "summ_screen_fd", "qmsum", '
'"narrative_qa", "qasper", "quality", "contract_nli"')
parser.add_argument('--validate_only', action='store_true', default=False,
help='Skip training and run only validation. (default: False)')
parser.add_argument('--working_dir', type=str, default='.',
help='working dir, should be a dir with t5-experiments repo (default: .)')
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--show_valid_examples', type=int, default=0,
help='how many valid examples to show during training (default: 0)')
parser.add_argument('--input_seq_len', type=int, default=128, help='input sequnce length (default: 128).')
parser.add_argument('--target_seq_len', type=int, default=16, help='target sequnce length, should be set to '
'max(len(target))+1 for EOS (default: 16).')
parser.add_argument('--data_n_workers', type=int, default=2, help='number of dataloader workers (default: 2)')
parser.add_argument('--input_prefix', type=str, default='', help='add task prefix to an input string (default: "")')
parser.add_argument('--sliding_window', action='store_true', help='use slinding window attention mask, '
'eval on last segment only', default=False)
# parser.add_argument('--use_generate_on_valid', action='store_true', help='use generate methon on validation', default=False)
# model args
parser.add_argument('--from_pretrained', type=str, help='model name in HF Model Hub (default: "")')
parser.add_argument('--model_cfg', type=str, help='path to model configuration file (default: "")')
parser.add_argument('--model_cls', type=str, default='transformers:BertForPreTraining',
help='model class name to use (default: transformers:BertForPreTraining)')
parser.add_argument('--memory_cell_cls', type=str, default=None, help='cell class for RMT')
parser.add_argument('--recurrent_wrapper_cls', type=str, default=None, help='recurrent wrapper class for RMT')
parser.add_argument('--model_cpt', type=str, default=None, help='pretrained model checkpoint path')
parser.add_argument('--model_type', type=str, default='encoder-decoder',
help='model type, encoder, encoder-decoder, decoder, affects preprocessing '
'(default: encoder-decoder)')
# Aydar # RMT args
parser.add_argument('--input_size', type=int, default=None, help='maximal input size of the backbone model')
parser.add_argument('--num_mem_tokens', type=int, default=None, help='number of memory tokens.')
parser.add_argument('--max_n_segments', type=int, default=1, help='maximal segment number')
parser.add_argument('--vary_n_segments', action='store_true', default=False, help='Randomly choose segment number from 1 to max_n_segments')
parser.add_argument('--segment_alignment', type=str, default=None, help="How to align segments when splitting input")
parser.add_argument('--k2', type=int, default=-1, help='number of last segments used by backward')
parser.add_argument('--freeze_model_weights', action='store_true', default=False,
help='Stop training all model weights except memory layers')
parser.add_argument('--backbone_cpt', type=str, default=None, help='backbone model checkpoint path')
# tokenizer
# todo: add wordpiece tokenizers support?
parser.add_argument('--tokenizer', type=str, default=None, help='path or name of pre-trained HF Tokenizer')
# optimizer args
parser.add_argument('--optimizer', type=str, default='AdamW', help='optimizer name: AdamW, Adafactor. (default: AdamW)')
parser.add_argument('--weight_decay', type=float, default=0.0, help='optimizer weight decay (default: 0.0)')
parser.add_argument('--scale_parameter', action='store_true', default=False,
help='Adafactor scale_parameter (default: False)')
parser.add_argument('--relative_step', action='store_true', default=False,
help='Adafactor relative_step (default: False)')
parser.add_argument('--warmup_init', action='store_true', default=False,
help='Adafactor warmup_init (default: False)')
def download_metric():
scrolls_metric_path = hf_hub_download(repo_id="tau/scrolls", filename="metrics/scrolls.py", repo_type="dataset")
updated_scrolls_metric_path = (
os.path.dirname(scrolls_metric_path) + os.path.basename(scrolls_metric_path).replace(".", "_") + ".py"
)
shutil.copy(scrolls_metric_path, updated_scrolls_metric_path)
return updated_scrolls_metric_path
scrolls_metric_path = download_metric()
task_to_metric = {
'gov_report': ['rouge/rouge1', 'rouge/rouge2', 'rouge/rougeL', 'rouge/rougeLsum', 'rouge/geometric_mean'],
'summ_screen_fd': ['rouge/rouge1', 'rouge/rouge2', 'rouge/rougeL', 'rouge/rougeLsum', 'rouge/geometric_mean'],
'qmsum': ['rouge/rouge1', 'rouge/rouge2', 'rouge/rougeL', 'rouge/rougeLsum', 'rouge/geometric_mean'],
'narrative_qa': ['f1'],
'qasper': ['f1'],
'quality': ['exact_match'],
'contract_nli': ['exact_match']
}
tasks_with_duplicates = {'narrative_qa', 'qasper'}
# https://github.com/tau-nlp/scrolls/blob/5bfb8dbaf3a0128ac8c65922096fd95a645f6ba2/baselines/src/utils/duplicates.py#L1
# some tasks have multiple possible labels for single input, drop_duplicates_in_input will collect such labels
def drop_duplicates_in_input(untokenized_dataset):
indices_to_keep = []
id_to_idx = {}
outputs = []
for i, (id_, output) in enumerate(zip(untokenized_dataset["id"], untokenized_dataset["output"])):
if id_ in id_to_idx:
outputs[id_to_idx[id_]].append(output)
continue
indices_to_keep.append(i)
id_to_idx[id_] = len(outputs)
outputs.append([output])
untokenized_dataset = untokenized_dataset.select(indices_to_keep).flatten_indices()
untokenized_dataset = untokenized_dataset.remove_columns("output")
untokenized_dataset = untokenized_dataset.add_column("outputs", outputs)
return untokenized_dataset
if __name__ == '__main__':
args = parser.parse_args()
# set current working dir
args.working_dir = str(Path(args.working_dir).expanduser().absolute())
os.chdir(args.working_dir)
accelerator = accelerate.Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
from accelerate.logging import get_logger
logger = get_logger('')
logger.info(f'num processes: {accelerator.num_processes}')
logger.info(f'mixed precision: {accelerator.mixed_precision}')
if args.model_path is None:
logger.warning('model_path is not set: config, logs and checkpoints will not be saved.')
# # create model path and save configuration
# # todo: use prepare run
# if accelerator.is_main_process and args.model_path is not None:
# model_path = Path(args.model_path)
# if not model_path.exists():
# Path(model_path).mkdir(parents=True)
# args_dict = collect_run_configuration(args)
# # todo: if model path exists and there is config file, write new config file aside
# json.dump(args_dict, open(model_path/'config.json', 'w'), indent=4)
# open(model_path / 'git.diff', 'w').write(get_git_diff())
prepare_run(args, logger, logger_fmt)
if not args.from_pretrained:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
else:
tokenizer = AutoTokenizer.from_pretrained(args.from_pretrained)
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if args.model_type == 'decoder':
from torch.nn.utils.rnn import pad_sequence
tokenizer.add_special_tokens({'additional_special_tokens': ['[GEN]', '[PAD]']})
gen_token = tokenizer.encode('[GEN]')[0]
tokenizer.pad_token_id = tokenizer.encode('[PAD]')[0]
eos_token = tokenizer.eos_token_id
id_pad_value = tokenizer.pad_token_id
block_size = args.input_size
if args.num_mem_tokens not in {0, None}:
block_size -= 2 * args.num_mem_tokens
def collate_fn(batch):
inputs = [b['input'][:args.input_seq_len * 10] for b in batch]
if 'outputs' in batch[0]:
# if we have more than 1 label per example (only in valid) take only one of them
# to compute loss on valid
target_text = [b['outputs'][0][:args.input_seq_len * 10] for b in batch]
else:
target_text = [b['output'][:args.input_seq_len * 10] for b in batch]
collated = {}
inputs = tokenizer.batch_encode_plus(list(inputs), max_length=args.input_seq_len, truncation=True, padding=False)
labels = tokenizer.batch_encode_plus(list(target_text), padding=False)
full_inputs = [torch.tensor(i[:args.input_seq_len - len(l) - 2] + [gen_token] + l + [eos_token]) for i, l in zip(inputs['input_ids'], labels['input_ids'])]
labels_mask = [torch.zeros_like(i).bool() for i in full_inputs]
for i, l in enumerate(labels['input_ids']):
labels_mask[i][-len(l) - 2:] = True
full_inputs = pad_sequence(full_inputs, padding_value=tokenizer.pad_token_id).T
labels_mask = pad_sequence(labels_mask, padding_value=False).T
gen_inputs = [torch.tensor(i[:args.input_seq_len - len(l) - 2] + [gen_token]) for i, l in zip(inputs['input_ids'], labels['input_ids'])]
gen_inputs = pad_sequence(gen_inputs, padding_value=tokenizer.pad_token_id).T
collated['input_ids'] = collated['labels'] = full_inputs
collated['input_ids_generate'] = gen_inputs
collated['labels_mask'] = labels_mask
collated['attention_mask'] = (full_inputs != id_pad_value).bool()
collated['attention_mask_generate'] = (gen_inputs != id_pad_value).bool()
collated['id'] = [b['id'] for b in batch]
collated['target_text'] = target_text
return collated
else:
raise NotImplementedError(f'Unknown model type {args.model_type}')
kwargs = {'pin_memory': True, 'num_workers': args.data_n_workers}
# get train dataset
logger.info(f'preparing dataset for: {args.task_name}')
dataset = datasets.load_dataset('tau/scrolls', args.task_name)
train_dataset = dataset['train']
# shuffle train data each epoch (one loop over train_dataset)
train_rnd_generator = torch.Generator()
train_rnd_generator.manual_seed(args.seed)
per_worker_batch_size = args.batch_size * args.gradient_accumulation_steps
kwargs = {'pin_memory': True, 'num_workers': args.data_n_workers}
train_dataloader = DataLoader(train_dataset, batch_size=per_worker_batch_size, generator=train_rnd_generator,
collate_fn=collate_fn, **kwargs)
# get validation dataset
valid_dataloader = None
logger.info(f'preparing validation data from: {args.task_name}')
valid_dataset = dataset['validation']
if args.task_name in tasks_with_duplicates:
valid_dataset = drop_duplicates_in_input(valid_dataset)
valid_dataloader = DataLoader(valid_dataset, batch_size=per_worker_batch_size,
drop_last=True,
collate_fn=collate_fn, **kwargs)
if args.valid_interval is None:
args.valid_interval = args.log_interval
# define model
model_cls = get_cls_by_name(args.model_cls)
logger.info(f'Using model class: {model_cls}')
if not args.from_pretrained:
model_cfg = AutoConfig.from_pretrained(args.model_cfg)
model = model_cls(config=model_cfg)
else:
logger.info(f'Loading pretrained model: {args.from_pretrained}')
model = model_cls.from_pretrained(args.from_pretrained)
# add [GEN] token
model.resize_token_embeddings(len(tokenizer))
## load cpt of backbone model
if args.backbone_cpt:
backbone_cpt = os.path.join(args.backbone_cpt, "model_best.pth")
cpt = torch.load(backbone_cpt, map_location='cpu')
model.load_state_dict(cpt['model_state_dict'], strict=False)
logger.info(f'Loaded baseline state dict from: {args.backbone_cpt}')
# Pass memory settings to pretrained model
if args.num_mem_tokens is not None:
memory_cell_cls = get_cls_by_name(args.memory_cell_cls)
recurrent_wrapper_cls = get_cls_by_name(args.recurrent_wrapper_cls)
logger.info(f'Wrapping in: {memory_cell_cls} and {recurrent_wrapper_cls}')
cell = memory_cell_cls(model, args.num_mem_tokens)
model = recurrent_wrapper_cls(cell,
segment_size=block_size,
max_n_segments=args.max_n_segments,
vary_n_segments=args.vary_n_segments,
k2=args.k2,
segment_alignment=args.segment_alignment
)
## load cpt of rmt
if args.model_cpt:
model_cpt = os.path.join(args.model_cpt, "model_best/pytorch_model.bin")
cpt = torch.load(model_cpt, map_location='cpu')
vocab_size = model.memory_cell.model.gpt_neox.embed_in.weight.shape[0]
cpt_vocab_size = cpt['memory_cell.model.gpt_neox.embed_in.weight'].shape[0]
if vocab_size < cpt_vocab_size:
model.memory_cell.model.resize_token_embeddings(cpt_vocab_size)
model.load_state_dict(cpt, strict=False)
logger.info(f'Loaded RMT state dict from: {args.model_cpt}')
if args.freeze_model_weights:
for n, p in model.named_parameters():
# if 'memory' not in n and 'wte' not in n:
if 'memory' not in n and 'lora' not in n:
p.requires_grad = False
logger.info(f'Frozen moodel weights')
logger.info(f'Remaining parameters: {[n for n, p in model.named_parameters() if p.requires_grad]}')
# # fix the not-contiguous error with loralib and horovod
# def make_contiguous(module):
# with torch.no_grad():
# for param in module.parameters():
# param.set_(param.contiguous())
# make_contiguous(model)
# define optimizer
optimizer_cls = get_optimizer(args.optimizer)
if optimizer_cls is None:
raise RuntimeError(f'{args.optimizer} was not found in optimizers, torch.optim, transformers.optimization')
logger.info(f'Using optimizer class: {optimizer_cls}')
# todo: group optimizer params
if optimizer_cls in [transformers.optimization.Adafactor, optimizers.Adafactor]:
# https://github.com/huggingface/transformers/pull/9751/files -> transformers 4.3.0
optimizer = optimizer_cls(model.parameters(), lr=args.lr,
scale_parameter=args.scale_parameter,
relative_step=args.relative_step,
warmup_init=args.warmup_init,
weight_decay=args.weight_decay)
else:
optimizer = optimizer_cls(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# for encoder only classification
def keep_for_metrics_fn(batch, output):
# select data from batch and model output that would be used to compute metrics
data = {}
if 'generation_outputs' in output:
data['labels'] = batch['target_text']
data['input_ids'] = batch['input_ids']
data['labels_mask'] = batch['labels_mask']
data['generation_outputs'] = output['generation_outputs']
for key in batch.keys():
if 'loss' in key:
data[key] = batch[key]
return data
# HF datasets can compute metrics on each gpu process and then aggregate them on process with rank 0
# synchronization is done by using temporay files on a shared filesystem
# rank and number of workers is set by num_process and process_id params
# BUT our Trainer aggregates all prediction from all gpus!
# this will lead to computing metrics for predictions repeated xN_GPUS times
# need to try:
# - keep_in_memory=True, may lead to OOM for large validation sets, after sync predictions and targets for the full
# validation set would be stored on each GPU -> xN_GPUs RAM
# - implemented currently
# - compute metrics on batch lvl
# - add support of HF metrics and turn off aggregation in case if metric has .add_batch method
scrolls_metric = datasets.load_metric(scrolls_metric_path, args.task_name, keep_in_memory=True)
def metrics_fn(data):
# compute metrics based on stored labels, predictions, ...
metrics = {}
y, p = None, None
if 'generation_outputs' in data:
# replace -100 with pad token in labels
y = data['labels']
p = tokenizer.batch_decode(data['generation_outputs'], skip_special_tokens=True)
metrics['exact_match'] = np.mean([y_ == p_[:len(y_)] for p_, y_ in zip (p, y)])
if args.show_valid_examples > 0:
for i in range(min(args.show_valid_examples, len(y))):
logger.info(f'y: {y[i][:250]}')
logger.info(f'p: {p[i][:250]}')
logger.info(f'p ids: {len(data["generation_outputs"][i]), data["generation_outputs"][i][:50]}')
logger.info('-' * 50)
if not isinstance(y[0], list):
y = [[_y] for _y in y]
result = scrolls_metric.compute(predictions=p, references=y)
for metric_name in task_to_metric[args.task_name]:
metrics[metric_name] = result[metric_name]
return metrics
# accelerate
model, optimizer, train_dataloader, valid_dataloader, test_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, None)
### booydar
batch_metrics_fn = lambda _, y: {key: y[key] for key in y.keys() if (('loss' in key) or ('!log' in key))}
generate_kwargs = {'pad_token_id': tokenizer.pad_token_id}
trainer = Trainer(args, accelerator, model, optimizer, train_dataloader, valid_dataloader,
keep_for_metrics_fn=keep_for_metrics_fn, metrics_fn=metrics_fn,
###booydar
batch_metrics_fn=batch_metrics_fn,
generate_kwargs=generate_kwargs)
if not args.validate_only:
# train loop
trainer.train()
# make sure all workers are done
accelerator.wait_for_everyone()
# run validation after training
if args.save_best:
best_model_path = str(Path(args.model_path) / 'model_best')
logger.info(f'Loading best saved model from {best_model_path}')
trainer.load(best_model_path)
if valid_dataloader is not None:
logger.info('Runnning validation on valid data:')
trainer.validate(valid_dataloader, write_tb=False, split='valid')
if test_dataloader is not None:
logger.info('Runnning validation on test data:')
trainer.validate(test_dataloader, write_tb=True, split='test')
trainer.save_metrics(save_path=args.model_path)
else:
# run validation, do not write to tensorboard
logger.info('Running validation on train set:')
trainer.validate(train_dataloader, split='train', write_tb=True)
if valid_dataloader is not None:
logger.info('Running validation on valid data:')
trainer.validate(valid_dataloader, write_tb=True, split='valid')
if test_dataloader is not None:
logger.info('Runnning validation on test data:')
trainer.validate(test_dataloader, write_tb=True, split='test')