forked from booydar/recurrent-memory-transformer
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_finetuning_lm_rmt.py
550 lines (459 loc) · 27.1 KB
/
run_finetuning_lm_rmt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import json
import logging
import os
import math
from pathlib import Path
from itertools import chain
import wandb
# from dotenv import load_dotenv
import torch
import numpy as np
import random
import datasets
from torch.utils.data import DataLoader
from lm_experiments_tools.trainer_accelerate import TrainerAccelerateArgs as TrainerArgs
from lm_experiments_tools.trainer_accelerate import TrainerAccelerate as Trainer
from torch.nn.utils.rnn import pad_sequence
import accelerate
from peft import get_peft_model, LoraConfig, TaskType
# load_dotenv()
logger_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
logging.basicConfig(format=logger_fmt, level=logging.INFO)
logger = logging.getLogger('')
# if CUDA_VISIBLE_DEVICES is not set make all gpus visible
if os.environ.get('CUDA_VISIBLE_DEVICES', None) is None:
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join([str(i) for i in range(torch.cuda.device_count())])
logger.info(f"CUDA_VISIBLE_DEVICES: {os.environ['CUDA_VISIBLE_DEVICES']}")
# first call to torch.cuda.device_count() sets visible gpus, following calls will not change the result
logger.info(f"CUDA DEVICE COUNT: {torch.cuda.device_count()}")
# import transformers # noqa: E402
from transformers import AutoConfig, AutoTokenizer, HfArgumentParser # noqa: E402
from peft import LoraConfig, TaskType, get_peft_model
from lm_experiments_tools.utils import get_cls_by_name, get_optimizer, prepare_run # noqa: E402
# limit # of CPU threads to be used per pytorch worker, otherwise it might use all cpus and throttle gpus
# > 2 fails cause of https://github.com/pytorch/pytorch/issues/56615
# need to upgrade to torch>1.8.1
# torch.set_num_threads(4)
# all gpus set with CUDA_VISIBLE_DEVICES are visible to process, indexing from 0 to ...
# torch.cuda.set_device(hvd.local_rank())
parser = HfArgumentParser(TrainerArgs)
parser.add_argument('--task_name', type=str, help="Task name, wikitext, ...")
parser.add_argument('--validate_only', action='store_true', default=False,
help='Skip training and run only validation. (default: False)')
parser.add_argument('--working_dir', type=str, default='.',
help='working dir, should be a dir with t5-experiments repo (default: .)')
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--show_valid_examples', type=int, default=0,
help='how many valid examples to show during training (default: 0)')
parser.add_argument('--input_seq_len', type=int, default=128, help='input sequnce length (default: 128).')
parser.add_argument('--val_seq_len', type=int, default=128, help='input sequnce length for validation (default: 128).')
parser.add_argument('--target_seq_len', type=int, default=16, help='target sequnce length, should be set to '
'max(len(target))+1 for EOS (default: 16).')
parser.add_argument('--data_n_workers', type=int, default=2, help='number of dataloader workers (default: 2)')
parser.add_argument('--input_prefix', type=str, default='', help='add task prefix to an input string (default: "")')
parser.add_argument('--sliding_window', action='store_true', help='use slinding window attentinon mask, '
'eval on last segment only', default=False)
# model args
parser.add_argument('--from_pretrained', type=str, help='model name in HF Model Hub (default: "")')
parser.add_argument('--model_cfg', type=str, help='path to model configuration file (default: "")')
parser.add_argument('--model_cls', type=str, default='transformers:BertForPreTraining',
help='model class name to use (default: transformers:BertForPreTraining)')
parser.add_argument('--memory_cell_cls', type=str, default=None, help='cell class for RMT')
parser.add_argument('--recurrent_wrapper_cls', type=str, default=None, help='recurrent wrapper class for RMT')
parser.add_argument('--model_cpt', type=str, default=None, help='pretrained model checkpoint path')
parser.add_argument('--model_type', type=str, default='encoder-decoder',
help='model type, encoder, encoder-decoder, decoder, affects preprocessing '
'(default: encoder-decoder)')
# Aydar # RMT args
parser.add_argument('--input_size', type=int, default=None, help='maximal input size of the backbone model')
parser.add_argument('--block_size', type=int, default=None, help='number of real tokens in block')
parser.add_argument('--num_mem_tokens', type=int, default=None, help='number of memory tokens.')
parser.add_argument('--d_mem', type=int, default=None, help='number of rows in associative matrix')
parser.add_argument('--max_n_segments', type=int, default=1, help='maximal segment number')
parser.add_argument('--max_val_segments', type=int, default=1, help='maximal segment number on validation')
parser.add_argument('--vary_n_segments', action='store_true', default=False, help='Randomly choose segment number from 1 to max_n_segments')
parser.add_argument('--sum_loss', action='store_true', default=False,
help='with this flag task loss from all segments is summed')
parser.add_argument('--bptt_depth', type=int, default=-1, help='max number of previous segments in gradient computation.')
parser.add_argument('--segment_ordering', type=str, help='segment order', default='regular',
choices=['regular', 'reversed', 'bidirectional', 'repeat_first', 'last_memory_only'])
parser.add_argument('--memory_forward_func', type=str, help='path to memory forward funсtion script', default=None)
parser.add_argument('--memory_layers', type=str, help='memory-augmented layer inds or "all" for all layers', default=None)
parser.add_argument('--share_memory_layers', action='store_true', help='share weights of memory layers', default=False)
parser.add_argument('--reconstruction_loss_coef', type=float, default=None,
help='reconstuction loss ratio in total loss')
# parser.add_argument('--segment_ordering', type=str,help='????', default='regular',
# choices=['regular', 'reversed', 'bidirectional', 'repeat_first', 'last_memory_only'])
parser.add_argument('--retain_graph', action='store_true', help='Retain computation graph during backward pass', default=False)
parser.add_argument('--use_truncated_backward', action='store_true', default=False,
help='whether to use RMT truncated bptt method in backward')
parser.add_argument('--k1', type=int, default=-1, help='(not implemented) If not -1, gradient update is done each k1 segments')
parser.add_argument('--k2', type=int, default=-1, help='number of last segments used by backward')
parser.add_argument('--freeze_model_weights', action='store_true', default=False,
help='Stop training all model weights except memory layers')
parser.add_argument('--backbone_cpt', type=str, default=None, help='backbone model checkpoint path')
# tokenizer
# todo: add wordpiece tokenizers support?
parser.add_argument('--tokenizer', type=str, default=None, help='path or name of pre-trained HF Tokenizer')
# optimizer args
parser.add_argument('--optimizer', type=str, default='AdamW', help='optimizer name: AdamW, Adafactor. (default: AdamW)')
parser.add_argument('--weight_decay', type=float, default=0.0, help='optimizer weight decay (default: 0.0)')
parser.add_argument('--scale_parameter', action='store_true', default=False,
help='Adafactor scale_parameter (default: False)')
parser.add_argument('--relative_step', action='store_true', default=False,
help='Adafactor relative_step (default: False)')
parser.add_argument('--warmup_init', action='store_true', default=False,
help='Adafactor warmup_init (default: False)')
# LoRA args
parser.add_argument('--use_lora', action='store_true', default=False, help='')
parser.add_argument('--lora_attn_dim', type=int, default=8, help='')
parser.add_argument('--lora_attn_alpha', type=int, default=32, help='')
parser.add_argument('--lora_dropout', type=float, default=0.1, help='')
# Parallel Adapter args
parser.add_argument('--use_adapter', action='store_true', default=False, help='')
parser.add_argument('--adapter_bottleneck_dim', type=int, default=512, help='')
parser.add_argument('--adapter_dropout', type=float, default=0.1, help='')
parser.add_argument('--adapter_scale', type=float, default=4.0, help='')
parser.add_argument('--report_to', type=str, default='wandb', help='')
if __name__ == '__main__':
args = parser.parse_args()
# set current working dir
args.working_dir = str(Path(args.working_dir).expanduser().absolute())
os.chdir(args.working_dir)
accelerator = accelerate.Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
from accelerate.logging import get_logger
logger = get_logger('')
logger.info(f'num processes: {accelerator.num_processes}')
logger.info(f'mixed precision: {accelerator.mixed_precision}')
if args.model_path is None:
logger.warning('model_path is not set: config, logs and checkpoints will not be saved.')
# # create model path and save configuration
# # todo: use prepare run
# if accelerator.is_main_process and args.model_path is not None:
# model_path = Path(args.model_path)
# if not model_path.exists():
# Path(model_path).mkdir(parents=True)
# args_dict = collect_run_configuration(args)
# # todo: if model path exists and there is config file, write new config file aside
# json.dump(args_dict, open(model_path/'config.json', 'w'), indent=4)
# open(model_path / 'git.diff', 'w').write(get_git_diff())
prepare_run(args, logger, logger_fmt)
if args.tokenizer:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
else:
tokenizer = AutoTokenizer.from_pretrained(args.from_pretrained)
# Prepare datasets
logger.info(f'preparing dataset for {args.task_name}')
with accelerator.main_process_first():
if 'wikitext' in args.task_name:
raw_datasets = datasets.load_dataset('wikitext', args.task_name)
column_names = raw_datasets["train"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
def tokenize_function(examples):
return tokenizer(examples[text_column_name])
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
remove_columns=column_names,
desc="Running tokenizer on dataset",
)
elif 'arxiv' in args.task_name:
# from datasets import load_from_disk
tokenized_datasets = datasets.load_from_disk('/home/bulatov/bulatov/datasets/arxiv_pile/processed/')
else:
raise ValueError(f"Unknown dataset {args.task_name}")
block_size = args.block_size
history_size = args.input_seq_len - block_size
if args.val_seq_len is not None:
val_history_size = args.val_seq_len - block_size
else:
val_history_size = history_size
def group_texts(examples, block_size, history_size=None):
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
if history_size is None:
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
else:
result = {
k: [t[max({0, i - history_size}) : i + block_size] for i in range(history_size, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
id_pad_value = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id
if args.sliding_window:
def collate_fn(batch):
input_ids = [torch.tensor(b['input_ids']) for b in batch]
input_lens = [el.shape[-1] for el in input_ids]
labels = [torch.tensor(b['labels']) for b in batch]
attention_mask = [torch.tensor(b['attention_mask']) for b in batch]
input_ids = pad_sequence(input_ids, padding_value=id_pad_value).T
labels = pad_sequence(labels, padding_value=-100).T
attention_mask = pad_sequence(attention_mask, padding_value=0).T
# make sliding window att mask
attention_mask = attention_mask[:, None, :].repeat(1, attention_mask.shape[1], 1)
attention_mask = (torch.tril(attention_mask, 0) * (1 - torch.tril(attention_mask, -block_size)))
collated = {'input_ids': input_ids,
'labels': labels,
'attention_mask': attention_mask}
if input_ids.shape[1] != block_size:
# take only labels for last block (maybe use all labels during training?)
labels_mask = torch.ones_like(input_ids, dtype=torch.bool)
# for i, lens in enumerate(input_lens):
# labels_mask[i, max(lens - block_size, 0): lens] = True
collated['labels_mask'] = labels_mask
return collated
else:
def collate_fn(batch, batch_i=-1, num_batches=-1, valid=False):
input_ids = [torch.tensor(b['input_ids'][::-1]) for b in batch]
labels = [torch.tensor(b['labels'][::-1]) for b in batch]
attention_mask = [torch.tensor(b['attention_mask'][::-1]) for b in batch]
input_ids = pad_sequence(input_ids, padding_value=id_pad_value).T.flip(1)
labels = pad_sequence(labels, padding_value=-100).T.flip(1)
attention_mask = pad_sequence(attention_mask, padding_value=0).T.flip(1)
collated = {'input_ids': input_ids,
'labels': labels,
'attention_mask': attention_mask}
if input_ids.shape[1] != block_size:
labels_mask = torch.ones_like(input_ids, dtype=bool)
# if not valid:
# labels_mask[:, :-block_size] = False
collated['labels_mask'] = labels_mask
# if valid:
# collated['labels_mask'][0, :-block_size*(batch_i+1)] = False
# collated['labels_mask'][-1, block_size*(num_batches-batch_i):] = False
# if getattr(args, 'vary_n_segments', False) and not valid:
# n_segments = random.randint(1, args.max_n_segments)
# n_tokens = n_segments * block_size
# for k in collated:
# collated[k] = collated[k][:, -n_tokens:]
return collated
with accelerator.main_process_first():
train_dataset = tokenized_datasets["train"].map(lambda x: group_texts(x, block_size, history_size),
batched=True, desc=f"Grouping train in chunks of {block_size} and history {history_size}")
valid_dataset = tokenized_datasets["validation"].map(lambda x: group_texts(x, block_size, val_history_size),
batched=True, desc=f"Grouping valid in chunks of {block_size}")
kwargs = {'pin_memory': True, 'num_workers': args.data_n_workers}
# shuffle train data each epoch (one loop over train_dataset)
per_worker_batch_size = args.batch_size * args.gradient_accumulation_steps
train_rnd_generator = torch.Generator()
train_rnd_generator.manual_seed(args.seed)
train_dataloader = DataLoader(train_dataset, batch_size=per_worker_batch_size, collate_fn=collate_fn,
shuffle=True, drop_last=False, generator=train_rnd_generator, **kwargs)
# dataloader for validation
# batch sample i is a continuation of sample i of the previous batch
class alignedDataLoader(DataLoader):
def __iter__(self):
all_inds = np.arange(len(self.dataset) // self.batch_size * self.batch_size)
all_inds = all_inds.reshape(self.batch_size, -1)
for batch_ind in range(all_inds.shape[1]):
batch = [self.dataset[int(ind)] for ind in all_inds[:, batch_ind]]
yield self.collate_fn(batch, batch_ind, all_inds.size(1))
# get validation dataset
valid_dataloader = None
logger.info('preparing validation data from babilong')
valid_dataloader = alignedDataLoader(valid_dataset, batch_size=per_worker_batch_size,
collate_fn=lambda *x: collate_fn(*x, valid=True), shuffle=False, drop_last=True, **kwargs)
# get test dataset
if 'test' in tokenized_datasets.keys():
test_dataset = tokenized_datasets["test"].map(lambda x: group_texts(x, block_size, val_history_size),
batched=True, desc=f"Grouping test in chunks of {block_size}")
test_dataloader = alignedDataLoader(test_dataset, batch_size=per_worker_batch_size,
collate_fn=lambda *x: collate_fn(*x, valid=True), shuffle=False, drop_last=True, **kwargs)
if args.valid_interval is None:
args.valid_interval = args.log_interval
# define model
model_cls = get_cls_by_name(args.model_cls)
logger.info(f'Using model class: {model_cls}')
if args.use_adapter:
model_cfg = AutoConfig.from_pretrained(args.from_pretrained)
model_cfg.use_parallel_adapter = args.use_adapter
model_cfg.parallel_adapter_mode = 'ffn'
model_cfg.adapter_bottleneck_dim = args.adapter_bottleneck_dim
model_cfg.adapter_dropout = args.adapter_dropout
model_cfg.adapter_scale = args.adapter_scale
model = model_cls(config=model_cfg)
logger.info(f'Loading pretrained model: {args.from_pretrained}')
base_model = model_cls.from_pretrained(args.from_pretrained, use_safetensors=False)
model.load_state_dict(base_model.state_dict(), strict=False)
del base_model
logger.info(f'Added adapters')
else:
if not args.from_pretrained:
model_cfg = AutoConfig.from_pretrained(args.model_cfg)
model = model_cls(config=model_cfg)
else:
logger.info(f'Loading pretrained model: {args.from_pretrained}')
model = model_cls.from_pretrained(args.from_pretrained, use_safetensors=False)
if args.use_lora:
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=args.lora_attn_dim,
lora_alpha=args.lora_attn_alpha,
lora_dropout=args.lora_dropout
)
model = get_peft_model(model, peft_config)
logger.info(f'Added LoRA, trainable parameters with LoRA only:')
model.print_trainable_parameters()
## load cpt of backbone model
if args.backbone_cpt:
backbone_cpt = os.path.join(args.backbone_cpt, "model_best")
cpt = torch.load(backbone_cpt, map_location='cpu')
model.load_state_dict(cpt['model_state_dict'], strict=False)
logger.info(f'Loaded baseline state dict from: {args.backbone_cpt}')
# Pass memory settings to pretrained model
if args.num_mem_tokens is not None:
memory_cell_cls = get_cls_by_name(args.memory_cell_cls)
recurrent_wrapper_cls = get_cls_by_name(args.recurrent_wrapper_cls)
logger.info(f'Wrapping in: {memory_cell_cls} and {recurrent_wrapper_cls}')
mem_cell_args = dict(
base_model=model,
num_mem_tokens=args.num_mem_tokens,
)
if args.d_mem is not None:
mem_cell_args['d_mem'] = args.d_mem
cell = memory_cell_cls(**mem_cell_args)
model = recurrent_wrapper_cls(cell,
segment_size=block_size,
max_n_segments=args.max_n_segments,
vary_n_segments=args.vary_n_segments,
k2=args.k2,
)
## load cpt of rmt
if args.model_cpt and args.model_cpt != 'None':
model_cpt = os.path.join(args.model_cpt, "model_best/pytorch_model.bin")
cpt = torch.load(model_cpt, map_location='cpu')
model.load_state_dict(cpt, strict=False)
logger.info(f'Loaded RMT state dict from: {args.model_cpt}')
if args.freeze_model_weights:
for n, p in model.named_parameters():
if 'memory' not in n and 'lora' not in n and 'adapter' not in n:
p.requires_grad = False
else:
p.requires_grad = True
logger.info(f'Frozen moodel weights')
logger.info(f'Remaining parameters: {[n for n, p in model.named_parameters() if p.requires_grad]}')
# fix the not-contiguous error
def make_contiguous(module):
with torch.no_grad():
for param in module.parameters():
param.set_(param.contiguous())
make_contiguous(model)
# define optimizer
optimizer_cls = get_optimizer(args.optimizer)
if optimizer_cls is None:
raise RuntimeError(f'{args.optimizer} was not found in optimizers, torch.optim, transformers.optimization')
logger.info(f'Using optimizer class: {optimizer_cls}')
# todo: group optimizer params
optimizer = optimizer_cls(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# if (args.model_cpt and args.model_cpt != 'None') or args.backbone_cpt:
# optimizer.load_state_dict(cpt['optimizer_state_dict'])
# for encoder only classification
def keep_for_metrics_fn(batch, output):
# select data from batch and model output that would be used to compute metrics
data = {}
data['labels'] = batch['labels']
data['loss'] = output['loss']
data['predictions'] = torch.argmax(output['logits'].detach(), dim=-1)
if 'ce_loss' in output:
data['ce_loss'] = output['ce_loss']
for i in range(args.max_n_segments):
if f'ce_loss_{i}' in output:
data[f'ce_loss_{i}'] = output[f'ce_loss_{i}']
return data
# HF datasets can compute metrics on each gpu process and then aggregate them on process with rank 0
# synchronization is done by using temporay files on a shared filesystem
# rank and number of workers is set by num_process and process_id params
# BUT our Trainer aggregates all prediction from all gpus!
# this will lead to computing metrics for predictions repeated xN_GPUS times
# need to try:
# - keep_in_memory=True, may lead to OOM for large validation sets, after sync predictions and targets for the full
# validation set would be stored on each GPU -> xN_GPUs RAM
# - implemented currently
# - compute metrics on batch lvl
# - add support of HF metrics and turn off aggregation in case if metric has .add_batch method
# scrolls_metric = datasets.load_metric(scrolls_metric_path, args.task_name, keep_in_memory=True)
def metrics_fn(data):
# compute metrics based on stored labels, predictions, ...
metrics = {}
y, p = data['labels'], data['predictions']
if accelerator.is_main_process == 0 and args.show_valid_examples > 0:
for i in range(min(args.show_valid_examples, len(y))):
y_ = np.array(y[i])
p_ = np.array(p[i])
logger.info(f'y: {tokenizer.decode(y_[y_ != -100])}')
logger.info(f'p: {tokenizer.decode(p_[p_ != -100])}')
logger.info(f'y: {y[i]}')
logger.info(f'p: {p[i]}')
logger.info('-' * 50)
if 'ce_loss' in data:
metrics['ce_loss'] = data['ce_loss'].mean()
try:
perplexity = math.exp(metrics['ce_loss'])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
for i in range(args.max_n_segments):
if f'ce_loss_{i}' in data:
metrics[f'ce_loss_{i}'] = data[f'ce_loss_{i}'].mean()
return metrics
# accelerate
model, optimizer, train_dataloader, valid_dataloader, test_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, test_dataloader)
### booydar
batch_metrics_fn = lambda _, y: {key: y[key] for key in y.keys() if (('loss' in key) or ('!log' in key))}
trainer = Trainer(args, accelerator, model, optimizer, train_dataloader, valid_dataloader, # train_sampler,
keep_for_metrics_fn=keep_for_metrics_fn, metrics_fn=metrics_fn,
batch_metrics_fn=batch_metrics_fn,
generate_kwargs={})
if not args.validate_only:
# train loop
trainer.train()
# make sure all workers are done
accelerator.wait_for_everyone()
# run validation after training
if args.save_best:
best_model_path = str(Path(args.model_path) / 'model_best')
logger.info(f'Loading best saved model from {best_model_path}')
trainer.load(best_model_path)
if valid_dataloader is not None:
logger.info('Runnning validation on valid data:')
metrics = trainer.validate(valid_dataloader, write_tb=False, split='valid')
evaluated_on = []
metric_on = []
for i in range(args.max_val_segments):
if f'ce_loss_{i}' in metrics:
evaluated_on.append(i)
metric_on.append(metrics[f'ce_loss_{i}'])
if args.report_to == 'wandb' and accelerator.is_main_process:
table = wandb.Table(data=np.vstack([evaluated_on, metric_on]).T, columns=['evaluated_on', 'valid/ce_loss'])
line = trainer.run.plot_table("wandb/line/v0", table, {"x":'evaluated_on', "y":'valid/ce_loss'})
trainer.run.log({'per_segment_eval': line})
if test_dataloader is not None:
logger.info('Runnning validation on test data:')
metrics = trainer.validate(test_dataloader, write_tb=False, split='test')
evaluated_on = []
metric_on = []
for i in range(args.max_val_segments):
if f'ce_loss_{i}' in metrics:
evaluated_on.append(i)
metric_on.append(metrics[f'ce_loss_{i}'])
if args.report_to == 'wandb' and accelerator.is_main_process:
table = wandb.Table(data=np.vstack([evaluated_on, metric_on]).T, columns=['evaluated_on', 'test/ce_loss'])
line = trainer.run.plot_table("wandb/line/v0", table, {"x":'evaluated_on', "y":'test/ce_loss'})
trainer.run.log({'per_segment_test': line})
trainer.save_metrics(save_path=args.model_path)
else:
# run validation, do not write to tensorboard
logger.info('Running validation on train set:')
trainer.validate(train_dataloader, split='train', write_tb=False)
if valid_dataloader is not None:
logger.info('Running validation on valid data:')
trainer.validate(valid_dataloader, write_tb=False, split='valid')
if test_dataloader is not None:
logger.info('Runnning validation on test data:')
trainer.validate(test_dataloader, write_tb=False, split='test')