-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimage detection.py
220 lines (176 loc) · 6.61 KB
/
image detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
A tracker class for controlling the Tello and some sample code for showing how
it works. you can test it using your webcam or a video file to make sure it works.
it computes a vector of the ball's direction from the center of the
screen. The axes are shown below (assuming a frame width and height of 600x400):
+y (0,200)
Y (-300, 0) (0,0) (300,0)
-Y (0,-200)
-X X +X
Based on the tutorial:
https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
Usage:
for existing video:
python tracker.py --video ball_tracking_example.mp4
For live feed:
python tracking.py
@author Leonie Buckley and Jonathan Byrne
@copyright 2018 see license file for details
"""
# import the necessary packages
import argparse
import time
import cv2
import imutils
from imutils.video import VideoStream
def main():
"""Handles inpur from file or stream, tests the tracker class"""
arg_parse = argparse.ArgumentParser()
arg_parse.add_argument("-v", "--video",
help="path to the (optional) video file")
args = vars(arg_parse.parse_args())
# define the lower and upper boundaries of the "green"
# ball in the HSV color space. NB the hue range in
# opencv is 180, normally it is 360
#green_lower = (50, 50, 50)
#green_upper = (70, 255, 255)
# red_lower = (0, 50, 50)
# red_upper = (20, 255, 255)
# blue_lower = (110, 50, 50)
# upper_blue = (130, 255, 255)
color_lower = (0, 50, 50) #BGR
color_upper = (20, 255,255) #RGB
# if a video path was not supplied, grab the reference
# to the webcam
if not args.get("video", False):
vid_stream = VideoStream(src=0).start()
# otherwise, grab a reference to the video file
else:
vid_stream = cv2.VideoCapture(args["video"])
# allow the camera or video file to warm up
time.sleep(2.0)
stream = args.get("video", False)
frame = get_frame(vid_stream, stream)
height, width = frame.shape[0], frame.shape[1]
colortracker = Tracker(height, width, color_lower, color_upper)
# keep looping until no more frames
more_frames = True
while more_frames:
colortracker.track(frame)
frame = colortracker.draw_arrows(frame)
show(frame)
frame = get_frame(vid_stream, stream)
if frame is None:
more_frames = False
# if we are not using a video file, stop the camera video stream
if not args.get("video", False):
vid_stream.stop()
# otherwise, release the camera
else:
vid_stream.release()
# close all windows
cv2.destroyAllWindows()
def get_frame(vid_stream, stream):
"""grab the current video frame"""
frame = vid_stream.read()
# handle the frame from VideoCapture or VideoStream
frame = frame[1] if stream else frame
# if we are viewing a video and we did not grab a frame,
# then we have reached the end of the video
if frame is None:
return None
else:
frame = imutils.resize(frame, width=600)
return frame
def show(frame):
"""show the frame to cv2 window"""
cv2.imshow("Frame", frame)
key = cv2.waitKey(1)
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
exit()
class Tracker:
"""
A basic color tracker, it will look for colors in a range and
create an x and y offset valuefrom the midpoint
"""
def __init__(self, height, width, color_lower, color_upper):
self.color_lower = color_lower
self.color_upper = color_upper
self.midx = int(width / 2)
self.midy = int(height / 2)
self.xoffset = 0
self.yoffset = 0
def draw_arrows(self, frame):
"""Show the direction vector output in the cv2 window"""
#cv2.putText(frame,"Color:", (0, 35), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, thickness=2)
cv2.arrowedLine(frame, (self.midx, self.midy),
(self.midx + self.xoffset, self.midy - self.yoffset),
(0, 0, 255), 5)
return frame
def track(self, frame):
"""Simple HSV color space tracking"""
# resize the frame, blur it, and convert it to the HSV
# color space
blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
# construct a mask for the color then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, self.color_lower, self.color_upper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0]
center = None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
#initialize temp variables
lowest_error = None
best_xoffset = 0
best_yoffset = 0
best_x = 0
best_y = 0
best_radius = 0
best_center = (0,0)
for c in cnts: #iterate through every contour
#c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > 10:
temp_xoffset = int(center[0] - self.midx) #store the xoffset and yoffset for each iteration of the loop
temp_yoffset = int(self.midy - center[1])
#calculate the distance from the previous x and y by finding the squared error
sqrd_error = ((temp_xoffset-self.xoffset)**2) + ((temp_yoffset - self.yoffset)**2)
#Set xoffset and yoffset for the lowest possible distance
if lowest_error is None or sqrd_error < lowest_error:
lowest_error = sqrd_error
best_xoffset = temp_xoffset
best_yoffset = temp_yoffset
best_x = x
best_y = y
best_radius = radius
best_center = center
#Set xoffset and yoffset to the best values calculated in the for loop
self.xoffset = best_xoffset
self.yoffset = best_yoffset
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(best_x), int(best_y)), int(best_radius), # Draws the yellow circle on video stream
(0, 255, 255), 2)
cv2.circle(frame, best_center, 5, (0, 0, 255), -1) # Draws a red dot in the center of the yellow circle
else:
self.xoffset = 0
self.yoffset = 0
print(f' X offset is: {self.xoffset}\n' f' Y offset is: {self.yoffset}' )
return self.xoffset, self.yoffset #feed the optimized xoffset and yoffset to telloCV.py
if __name__ == '__main__':
main()