-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
47 lines (38 loc) · 1.77 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import OpenAI
class Agent:
def __init__(self, openai_api_key: str | None = None) -> None:
# if openai_api_key is None, then it will look the enviroment variable OPENAI_API_KEY
self.embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
self.chat_history = None
self.chain = None
self.db = None
def ask(self, question: str) -> str:
if self.chain is None:
response = "Please, add a document."
else:
response = self.chain({"question": question, "chat_history": self.chat_history})
response = response["answer"].strip()
self.chat_history.append((question, response))
return response
def ingest(self, file_path: os.PathLike) -> None:
loader = PyPDFLoader(file_path)
documents = loader.load()
splitted_documents = self.text_splitter.split_documents(documents)
if self.db is None:
self.db = FAISS.from_documents(splitted_documents, self.embeddings)
self.chain = ConversationalRetrievalChain.from_llm(self.llm, self.db.as_retriever())
self.chat_history = []
else:
self.db.add_documents(splitted_documents)
def forget(self) -> None:
self.db = None
self.chain = None
self.chat_history = None