forked from DIUx-xView/xView2-deploy
-
Notifications
You must be signed in to change notification settings - Fork 2
/
tune50_loc.py
350 lines (247 loc) · 10.7 KB
/
tune50_loc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import os
os.environ["MKL_NUM_THREADS"] = "2"
os.environ["NUMEXPR_NUM_THREADS"] = "2"
os.environ["OMP_NUM_THREADS"] = "2"
from os import path, makedirs, listdir
import sys
import numpy as np
np.random.seed(1)
import random
random.seed(1)
import torch
from torch import nn
from torch.backends import cudnn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import torch.optim.lr_scheduler as lr_scheduler
from apex import amp
from adamw import AdamW
from losses import dice_round, ComboLoss
import pandas as pd
from tqdm import tqdm
import timeit
import cv2
from zoo.models import SeResNext50_Unet_Loc
from imgaug import augmenters as iaa
from utils import *
from skimage.morphology import square, dilation
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import gc
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
train_dirs = ['train', 'tier3']
models_folder = 'weights'
input_shape = (512, 512)
all_files = []
for d in train_dirs:
for f in sorted(listdir(path.join(d, 'images'))):
if '_pre_disaster.png' in f:
all_files.append(path.join(d, 'images', f))
train_len = len(all_files)
class TrainData(Dataset):
def __init__(self, train_idxs):
super().__init__()
self.train_idxs = train_idxs
self.elastic = iaa.ElasticTransformation(alpha=(0.25, 1.2), sigma=0.2)
def __len__(self):
return len(self.train_idxs)
def __getitem__(self, idx):
_idx = self.train_idxs[idx]
fn = all_files[_idx]
img = cv2.imread(fn, cv2.IMREAD_COLOR)
msk0 = cv2.imread(fn.replace('/images/', '/masks/'), cv2.IMREAD_UNCHANGED)
lbl_msk1 = cv2.imread(fn.replace('/images/', '/masks/').replace('_pre_disaster', '_post_disaster'), cv2.IMREAD_UNCHANGED)
if random.random() > 0.1:
if random.random() > 0.5:
img = img[::-1, ...]
msk0 = msk0[::-1, ...]
if random.random() > 0.1:
rot = random.randrange(4)
if rot > 0:
img = np.rot90(img, k=rot)
msk0 = np.rot90(msk0, k=rot)
if random.random() > 0.95:
shift_pnt = (random.randint(-320, 320), random.randint(-320, 320))
img = shift_image(img, shift_pnt)
msk0 = shift_image(msk0, shift_pnt)
if random.random() > 0.95:
rot_pnt = (img.shape[0] // 2 + random.randint(-320, 320), img.shape[1] // 2 + random.randint(-320, 320))
scale = 0.9 + random.random() * 0.2
angle = random.randint(0, 20) - 10
if (angle != 0) or (scale != 1):
img = rotate_image(img, angle, scale, rot_pnt)
msk0 = rotate_image(msk0, angle, scale, rot_pnt)
crop_size = input_shape[0]
if random.random() > 0.6:
crop_size = random.randint(int(input_shape[0] / 1.1), int(input_shape[0] / 0.9))
bst_x0 = random.randint(0, img.shape[1] - crop_size)
bst_y0 = random.randint(0, img.shape[0] - crop_size)
bst_sc = -1
try_cnt = random.randint(1, 5)
for i in range(try_cnt):
x0 = random.randint(0, img.shape[1] - crop_size)
y0 = random.randint(0, img.shape[0] - crop_size)
_sc = msk0[y0:y0+crop_size, x0:x0+crop_size].sum()
if _sc > bst_sc:
bst_sc = _sc
bst_x0 = x0
bst_y0 = y0
x0 = bst_x0
y0 = bst_y0
img = img[y0:y0+crop_size, x0:x0+crop_size, :]
msk0 = msk0[y0:y0+crop_size, x0:x0+crop_size]
if crop_size != input_shape[0]:
img = cv2.resize(img, input_shape, interpolation=cv2.INTER_LINEAR)
msk0 = cv2.resize(msk0, input_shape, interpolation=cv2.INTER_LINEAR)
if random.random() > 0.99:
img = shift_channels(img, random.randint(-5, 5), random.randint(-5, 5), random.randint(-5, 5))
if random.random() > 0.99:
img = change_hsv(img, random.randint(-5, 5), random.randint(-5, 5), random.randint(-5, 5))
if random.random() > 0.99:
if random.random() > 0.99:
img = clahe(img)
elif random.random() > 0.99:
img = gauss_noise(img)
elif random.random() > 0.99:
img = cv2.blur(img, (3, 3))
elif random.random() > 0.99:
if random.random() > 0.99:
img = saturation(img, 0.9 + random.random() * 0.2)
elif random.random() > 0.99:
img = brightness(img, 0.9 + random.random() * 0.2)
elif random.random() > 0.99:
img = contrast(img, 0.9 + random.random() * 0.2)
if random.random() > 0.999:
el_det = self.elastic.to_deterministic()
img = el_det.augment_image(img)
msk = msk0[..., np.newaxis]
msk = (msk > 127) * 1
img = preprocess_inputs(img)
img = torch.from_numpy(img.transpose((2, 0, 1))).float()
msk = torch.from_numpy(msk.transpose((2, 0, 1))).long()
sample = {'img': img, 'msk': msk, 'fn': fn}
return sample
class ValData(Dataset):
def __init__(self, image_idxs):
super().__init__()
self.image_idxs = image_idxs
def __len__(self):
return len(self.image_idxs)
def __getitem__(self, idx):
_idx = self.image_idxs[idx]
fn = all_files[_idx]
img = cv2.imread(fn, cv2.IMREAD_COLOR)
msk0 = cv2.imread(fn.replace('/images/', '/masks/'), cv2.IMREAD_UNCHANGED)
msk = msk0[..., np.newaxis]
msk = (msk > 127) * 1
img = preprocess_inputs(img)
img = torch.from_numpy(img.transpose((2, 0, 1))).float()
msk = torch.from_numpy(msk.transpose((2, 0, 1))).long()
sample = {'img': img, 'msk': msk, 'fn': fn}
return sample
def validate(net, data_loader):
dices0 = []
_thr = 0.5
with torch.no_grad():
for i, sample in enumerate(tqdm(data_loader)):
msks = sample["msk"].numpy()
imgs = sample["img"].cuda(non_blocking=True)
out = model(imgs)
msk_pred = torch.sigmoid(out[:, 0, ...]).cpu().numpy()
for j in range(msks.shape[0]):
dices0.append(dice(msks[j, 0], msk_pred[j] > _thr))
d0 = np.mean(dices0)
print("Val Dice: {}".format(d0))
return d0
def evaluate_val(data_val, best_score, model, snapshot_name, current_epoch):
model = model.eval()
d = validate(model, data_loader=data_val)
if d > best_score:
torch.save({
'epoch': current_epoch + 1,
'state_dict': model.state_dict(),
'best_score': d,
}, path.join(models_folder, snapshot_name + '_best'))
best_score = d
print("score: {}\tscore_best: {}".format(d, best_score))
return best_score
def train_epoch(current_epoch, seg_loss, model, optimizer, scheduler, train_data_loader):
losses = AverageMeter()
dices = AverageMeter()
iterator = tqdm(train_data_loader)
model.train()
for i, sample in enumerate(iterator):
imgs = sample["img"].cuda(non_blocking=True)
msks = sample["msk"].cuda(non_blocking=True)
out = model(imgs)
loss = seg_loss(out, msks)
with torch.no_grad():
_probs = torch.sigmoid(out[:, 0, ...])
dice_sc = 1 - dice_round(_probs, msks[:, 0, ...])
losses.update(loss.item(), imgs.size(0))
dices.update(dice_sc, imgs.size(0))
iterator.set_description(
"epoch: {}; lr {:.7f}; Loss {loss.val:.4f} ({loss.avg:.4f}); Dice {dice.val:.4f} ({dice.avg:.4f})".format(
current_epoch, scheduler.get_lr()[-1], loss=losses, dice=dices))
optimizer.zero_grad()
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), 1.1)
optimizer.step()
scheduler.step(current_epoch)
print("epoch: {}; lr {:.7f}; Loss {loss.avg:.4f}; Dice {dice.avg:.4f}".format(
current_epoch, scheduler.get_lr()[-1], loss=losses, dice=dices))
if __name__ == '__main__':
t0 = timeit.default_timer()
makedirs(models_folder, exist_ok=True)
seed = int(sys.argv[1])
# vis_dev = sys.argv[2]
# os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
# os.environ["CUDA_VISIBLE_DEVICES"] = vis_dev
cudnn.benchmark = True
batch_size = 15
val_batch_size = 4
snapshot_name = 'res50_loc_{}_tuned'.format(seed)
_, val_idxs = train_test_split(np.arange(train_len), test_size=0.1, random_state=seed)
np.random.seed(seed + 432)
random.seed(seed + 432)
train_idxs = np.arange(len(all_files)) # Use all train
steps_per_epoch = len(train_idxs) // batch_size
validation_steps = len(val_idxs) // val_batch_size
print('steps_per_epoch', steps_per_epoch, 'validation_steps', validation_steps)
data_train = TrainData(train_idxs)
val_train = ValData(val_idxs)
train_data_loader = DataLoader(data_train, batch_size=batch_size, num_workers=6, shuffle=True, pin_memory=False, drop_last=True)
val_data_loader = DataLoader(val_train, batch_size=val_batch_size, num_workers=6, shuffle=False, pin_memory=False)
model = SeResNext50_Unet_Loc().cuda()
params = model.parameters()
optimizer = AdamW(params, lr=0.00004, weight_decay=1e-6)
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[1, 2, 3, 4, 5, 7, 9, 11, 17, 23, 29, 33, 47, 50, 60, 70, 90, 110, 130, 150, 170, 180, 190], gamma=0.5)
snap_to_load = 'res50_loc_{}_0_best'.format(seed)
print("=> loading checkpoint '{}'".format(snap_to_load))
checkpoint = torch.load(path.join(models_folder, snap_to_load), map_location='cpu')
loaded_dict = checkpoint['state_dict']
sd = model.state_dict()
for k in model.state_dict():
if k in loaded_dict and sd[k].size() == loaded_dict[k].size():
sd[k] = loaded_dict[k]
loaded_dict = sd
model.load_state_dict(loaded_dict)
print("loaded checkpoint '{}' (epoch {}, best_score {})"
.format(snap_to_load, checkpoint['epoch'], checkpoint['best_score']))
del loaded_dict
del sd
del checkpoint
gc.collect()
torch.cuda.empty_cache()
seg_loss = ComboLoss({'dice': 1.0, 'focal': 10.0}, per_image=False).cuda()
best_score = 0
torch.cuda.empty_cache()
for epoch in range(12):
train_epoch(epoch, seg_loss, model, optimizer, scheduler, train_data_loader)
torch.cuda.empty_cache()
best_score = evaluate_val(val_data_loader, best_score, model, snapshot_name, epoch)
elapsed = timeit.default_timer() - t0
print('Time: {:.3f} min'.format(elapsed / 60))