forked from DIUx-xView/xView2-deploy
-
Notifications
You must be signed in to change notification settings - Fork 2
/
predict92cls.py
110 lines (83 loc) · 3.5 KB
/
predict92cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
from os import path, makedirs, listdir
import sys
import numpy as np
np.random.seed(1)
import random
random.seed(1)
import torch
from torch import nn
from torch.backends import cudnn
import torch.optim.lr_scheduler as lr_scheduler
from torch.autograd import Variable
import pandas as pd
from tqdm import tqdm
import timeit
import cv2
from zoo.models import Dpn92_Unet_Double
from utils import *
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
test_dir = 'test/images/pre'
models_folder = 'weights'
if __name__ == '__main__':
t0 = timeit.default_timer()
seed = int(sys.argv[1])
# vis_dev = sys.argv[2]
# os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
# os.environ["CUDA_VISIBLE_DEVICES"] = vis_dev
pred_folder = 'dpn92cls_cce_{}_tuned'.format(seed)
makedirs(pred_folder, exist_ok=True)
# cudnn.benchmark = True
models = []
snap_to_load = 'dpn92_cls_cce_{}_tuned_best'.format(seed)
model = Dpn92_Unet_Double().cuda()
model = nn.DataParallel(model).cuda()
print("=> loading checkpoint '{}'".format(snap_to_load))
checkpoint = torch.load(path.join(models_folder, snap_to_load), map_location='cpu')
loaded_dict = checkpoint['state_dict']
sd = model.state_dict()
for k in model.state_dict():
if k in loaded_dict and sd[k].size() == loaded_dict[k].size():
sd[k] = loaded_dict[k]
loaded_dict = sd
model.load_state_dict(loaded_dict)
print("loaded checkpoint '{}' (epoch {}, best_score {})"
.format(snap_to_load, checkpoint['epoch'], checkpoint['best_score']))
model.eval()
models.append(model)
print("Getting chips...")
pre_chips = [os.path.join(test_dir, a) for a in os.listdir(test_dir)]
post_chips = [os.path.join(test_dir.replace('pre','post'), a) for a in os.listdir(test_dir.replace('pre','post'))]
with torch.no_grad():
for i in tqdm(range(len(pre_chips))):
if True:
img = cv2.imread(pre_chips[i], cv2.IMREAD_COLOR)
img2 = cv2.imread(post_chips[i], cv2.IMREAD_COLOR)
img = np.concatenate([img, img2], axis=2)
img = preprocess_inputs(img)
inp = []
inp.append(img)
inp.append(img[::-1, ...])
inp.append(img[:, ::-1, ...])
inp.append(img[::-1, ::-1, ...])
inp = np.asarray(inp, dtype='float')
inp = torch.from_numpy(inp.transpose((0, 3, 1, 2))).float()
inp = Variable(inp).cuda()
pred = []
for model in models:
msk = model(inp)
msk = torch.sigmoid(msk)
msk = msk.cpu().numpy()
pred.append(msk[0, ...])
pred.append(msk[1, :, ::-1, :])
pred.append(msk[2, :, :, ::-1])
pred.append(msk[3, :, ::-1, ::-1])
pred_full = np.asarray(pred).mean(axis=0)
msk = pred_full * 255
msk = msk.astype('uint8').transpose(1, 2, 0)
rt = pre_chips[i].split('/')[-1]
cv2.imwrite(path.join(pred_folder, '{0}'.format(rt.replace('.tif', '_part1.png'))), msk[..., :3], [cv2.IMWRITE_PNG_COMPRESSION, 9])
cv2.imwrite(path.join(pred_folder, '{0}'.format(rt.replace('.tif', '_part2.png'))), msk[..., 2:], [cv2.IMWRITE_PNG_COMPRESSION, 9])
elapsed = timeit.default_timer() - t0
print('Time: {:.3f} min'.format(elapsed / 60))