-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
186 lines (153 loc) · 7.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from __future__ import print_function
from __future__ import division
import argparse
import jittor as jt
import jittor
import numpy as np
from jittor import optim, init
from jittor.misc import CTCLoss
import os
import utils
import dataset
from model import CRNN
from time import time
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('--expr_dir', default='runs', help='Where to store models')
parser.add_argument('--batchSize', type=int, default=16, help='input batch size')
parser.add_argument('--root', default='data', help='path to dataset directory')
parser.add_argument('--trainRoot', default='data/dataset/train', help='path to train dataset')
parser.add_argument('--valRoot', default='data/dataset/val', help='path to validation dataset')
parser.add_argument('--domain', default='semantic', help='ground truth representations')
parser.add_argument('--distort', action='store_true', help='use distorted images or not')
parser.add_argument('--nh', type=int, default=512, help='size of the lstm hidden state')
parser.add_argument('--pretrained', default='', help="path to pretrained model (to continue training)")
parser.add_argument('--num_workers', type=int, default=8, help="")
parser.add_argument('--lr', type=float, default=0.0001, help='learning rate for Critic, not used by adadelta')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--adadelta', action='store_true', help='Whether to use adadelta (default is adam)')
parser.add_argument('--rmsprop', action='store_true', help='Whether to use rmsprop (default is adam)')
parser.add_argument('--nepoch', type=int, default=25, help='number of epochs to train for')
parser.add_argument('--n_val_disp', type=int, default=10, help='Number of samples to display when val')
parser.add_argument('--displayInterval', type=int, default=10, help='Interval to be displayed')
parser.add_argument('--valInterval', type=int, default=400, help='Interval to val')
parser.add_argument('--saveInterval', type=int, default=400, help='Interval to save')
opt = parser.parse_args()
print(opt)
if jt.has_cuda:
print("using cuda")
jt.flags.use_cuda = 1
else:
print("using cpu")
root = opt.root
batch_size = opt.batchSize
domain = opt.domain
distorted = opt.distort
mode = "distorted" if opt.distort else "norm"
expr_dir = os.path.join(opt.expr_dir, domain, mode)
if not os.path.exists(expr_dir):
os.makedirs(expr_dir)
print("Loading datasets...")
train_dataset = dataset.lmdbDataset(root=opt.trainRoot,
batch_size=batch_size,
shuffle=True,
num_workers = opt.num_workers,
transform=dataset.resizeNormalize((800, 128)))
val_dataset = dataset.lmdbDataset(root=opt.valRoot,
batch_size=batch_size,
shuffle=True,
transform=dataset.resizeNormalize((800, 128)))
# train_dataset = dataset.OMRDataset(root="data",
# mode="train",
# domain="semantic",
# batch_size=batch_size,
# shuffle=True,
# num_workers=opt.num_workers,
# transform=dataset.resizeNormalize((800, 128)))
# val_dataset = dataset.OMRDataset(root="data",
# mode="val",
# domain="semantic",
# batch_size=batch_size,
# shuffle=True,
# transform=dataset.resizeNormalize((800, 128)))
assert train_dataset
converter = utils.strLabelConverter(domain=domain, root=root)
criterion = CTCLoss(zero_infinity=True)
nclass = len(converter.alphabet)
nc = 1
crnn = CRNN(nc, nclass, opt.nh)
print(crnn)
# custom weights initialization called on crnn
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.gauss_(m.weight, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
init.gauss_(m.weight, 1.0, 0.02)
init.constant_(m.bias, 0)
if opt.pretrained != '':
print('loading pretrained model from %s' % opt.pretrained)
crnn.load_state_dict(jt.load(opt.pretrained))
else:
crnn.apply(weights_init)
# setup optimizer
if opt.rmsprop:
optimizer = optim.RMSprop(crnn.parameters(), lr=opt.lr)
elif opt.adadelta:
print("Jittor doesn't support Adadelta now.")
exit(0)
optimizer = optim.Adadelta(crnn.parameters())
else:
optimizer = optim.Adam(crnn.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
def val(max_iter=20):
print('Start val')
crnn.eval()
n_correct = 0
loss_avg = utils.averager()
max_iter = min(max_iter, len(val_dataset))
for batch_idx, (images, raw_texts) in tqdm(enumerate(val_dataset), desc="validating"):
preds = crnn(images)
preds = jittor.nn.log_softmax(preds, dim=2)
text, length = converter.encode(raw_texts)
loss = criterion(preds, jt.array(text), jt.array([preds.size(0)] * batch_size), jt.array(length)) / batch_size
loss_avg.add(loss.data)
preds_index = preds.data.argmax(2)
preds_index = preds_index.transpose(1, 0)
sim_preds = converter.decode(preds_index, raw=False)
for pred, target in zip(sim_preds, raw_texts):
pred = pred.split()
target = target.split()
if pred == target:
n_correct += 1
if batch_idx >= max_iter:
break
raw_preds = converter.decode(preds_index, raw=True)[:opt.n_val_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, raw_texts):
print('%-20s \n=> %-20s\ngt: %-20s' % (raw_pred, pred, gt))
accuracy = n_correct / float(max_iter * batch_size)
print('Val loss: %f, sequence accuracy: %f' % (loss_avg.val(), accuracy))
def train():
print('Start train')
crnn.train()
loss_avg = utils.averager()
t0 = time()
for batch_idx, (images, raw_texts) in enumerate(train_dataset):
i = batch_idx + 1
preds = crnn(images)
preds = jittor.nn.log_softmax(preds, dim=2)
text, length = converter.encode(raw_texts)
loss = criterion(preds, jt.array(text), jt.array([preds.size(0)] * batch_size), jt.array(length)) / batch_size
optimizer.step(loss)
loss_avg.add(loss.data)
if i % opt.displayInterval == 0:
print('[%d/%d][%d/%d] Loss: %f Time per batch: %f' %
(epoch, opt.nepoch, i, int(len(train_dataset) / batch_size), loss_avg.val(), (time() - t0) / opt.displayInterval))
loss_avg.reset()
t0 = time()
if i % opt.valInterval == 0:
val()
crnn.train()
if i % opt.saveInterval == 0:
jt.save(crnn.state_dict(), '{0}/netCRNN_{1}_{2}.pkl'.format(expr_dir, epoch, i))
for epoch in range(1, opt.nepoch + 1):
train()