-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
208 lines (175 loc) · 7.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python3
import argparse
import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import os
import random
import tensorflow as tf
from datetime import date
from glob import glob
from sklearn.metrics import classification_report
from tensorflow.keras import Sequential, layers, optimizers
from tensorflow.keras.backend import clear_session
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.models import load_model
from typing import Tuple
class GenderClassifier:
def __init__(self, data_path, plot_path, epochs, batch_size):
self.data_path = data_path
self.plot_path = plot_path
self.epochs = epochs
self.batch_size = batch_size
matplotlib.use('Agg')
def __load_dataset(self, part: str) -> Tuple[np.ndarray, np.ndarray]:
data = []
labels = []
imagePaths = glob(f'{self.data_path}/{part}/**/*.jpg', recursive=True)
random.seed(42)
random.shuffle(imagePaths)
for imagePath in imagePaths:
image = cv2.imread(imagePath)
image = cv2.resize(image, (60, 80))
data.append(image)
# Binary encode where male = 0 and female = 1
labels.append(0 if imagePath.split(os.path.sep)[-2] == 'male' else 1)
return np.array(data), np.array(labels)
def __create_model(self, reg_layer: layers.Layer, opt: optimizers.Optimizer) -> tf.keras.Sequential:
model = Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(80, 60, 3)))
model.add(layers.MaxPooling2D((3, 3)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((3, 3)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((3, 3)))
model.add(layers.Flatten())
model.add(reg_layer)
model.add(layers.Dense(256, activation='sigmoid'))
model.add(layers.Dense(1, activation='sigmoid', name='output'))
model.compile(
loss='binary_crossentropy',
optimizer=opt,
metrics=['accuracy']
)
return model
def __plot_history(self, history, plot_path):
# plot the training loss and accuracy
N = np.arange(0, len(history.history['loss']))
plt.style.use('ggplot')
plt.figure()
plt.plot(N, history.history['loss'], label='train_loss')
plt.plot(N, history.history['accuracy'], label='train_acc')
if 'val_loss' in history.history:
plt.plot(N, history.history['val_loss'], label='val_loss')
plt.plot(N, history.history['val_accuracy'], label='val_acc')
plt.title('Training Loss and Accuracy')
plt.xlabel('Epoch #')
plt.ylabel('Loss/Accuracy')
plt.legend()
plt.savefig(plot_path)
def __evaluate_model(self, model: tf.keras.Sequential, x_test: np.ndarray, y_test: np.ndarray) -> None:
print('[INFO] evaluating network')
predictions = model.predict(x=x_test, batch_size=1024)
print(classification_report(y_test,
predictions.round(), target_names=['Male', 'Female']))
def tune_model(self) -> None:
x_train, y_train = self.__load_dataset('Training')
model = self.__create_model(
layers.Dropout(0.2),
optimizers.Adam()
)
print('[INFO] fitting network')
es = EarlyStopping(monitor='val_accuracy', mode='max', patience=10, min_delta=0.005)
history = model.fit(
x_train, y_train, validation_split=0.1,
epochs=self.epochs, batch_size=self.batch_size,
callbacks=[es], verbose=2
)
self.__plot_history(history, self.plot_path)
def save_model(self, model_path: str) -> None:
x_train, y_train = self.__load_dataset('Training')
model = self.__create_model(
layers.Dropout(0.2),
optimizers.SGD()
)
print('[INFO] fitting network')
es = EarlyStopping(monitor='val_accuracy', mode='max', patience=10, min_delta=0.005)
history = model.fit(
x_train, y_train, epochs=self.epochs,
batch_size=self.batch_size,
callbacks=[es], verbose=2
)
model.save(model_path, save_format="h5")
self.__plot_history(history, self.plot_path)
def test_model(self, model_path: str) -> None:
x_test, y_test = self.__load_dataset('Validation')
self.__evaluate_model(load_model(model_path), x_test, y_test)
def compare_models(self) -> None:
x_train, y_train = self.__load_dataset('Training')
x_test, y_test = self.__load_dataset('Validation')
regs = {
'dropout': layers.Dropout(0.2),
'batchnorm': layers.BatchNormalization()
}
opts = {
'sgd': optimizers.SGD(),
'sgdmom': optimizers.SGD(momentum=0.5),
'adam': optimizers.Adam(),
'nadam': optimizers.Nadam(),
'rmsprop': optimizers.RMSprop()
}
for reg_name, reg in regs.items():
for opt_name, opt in opts.items():
print(f'[INFO] fitting {reg_name} {opt_name} model', flush=True)
clear_session()
es = EarlyStopping(monitor='val_accuracy', mode='max', patience=10, min_delta=0.005)
history = self.__create_model(reg, opt).fit(
x_train, y_train, validation_data=(x_test, y_test),
epochs=self.epochs, batch_size=self.batch_size,
callbacks=[es], verbose=0
)
self.__plot_history(
history, f'{self.plot_path}/{date.today().strftime("%Y%m%d")}'
f'_{reg_name}_{opt_name}_{len(history.history["loss"])}-epochs.png'
)
print(
f'Validation accuracy: {history.history["val_accuracy"][-1]}\n'
f'Validation loss: {history.history["val_loss"][-1]}'
)
def parse_args():
parser = argparse.ArgumentParser(description='Gender classifier DNN')
parser.add_argument('-d', '--data', required=True,
help='path to the gender classification dataset')
parser.add_argument('-p', '--plot', required=True,
help='path to output accuracy/loss plot')
sp = parser.add_subparsers(title='command', dest='command')
sp.add_parser('tune',
help='do a tuning run using 90% of the training data and validate on the remaining 10%')
sp.add_parser('compare',
help='compare models using different regularization layers and optimizers')
save = sp.add_parser('save',
help='train and save a model')
save.add_argument('path',
help='output model path')
test = sp.add_parser('test',
help='do a testing run')
test.add_argument('path',
help='existing model path')
return parser.parse_args()
def main():
args = parse_args()
clf = GenderClassifier(args.data, args.plot, 50, 128)
if args.command == 'save':
clf.save_model(args.path)
clf.test_model(args.path)
return
elif args.command == 'test':
clf.test_model(args.path)
return
elif args.command == 'compare':
clf.compare_models()
return
clf.tune_model()
if __name__ == '__main__':
main()