-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtility.cpp
315 lines (259 loc) · 8.2 KB
/
Utility.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#include <stdio.h>
#include <math.h>
#include "Utility.h"
#include <iostream>
using namespace std;
// spline interpolator from:
// http://blog.ivank.net/interpolation-with-cubic-splines.html
// (MIT license, translated from JS)
void swapRows(cv::Mat M, int k, int l) {
float temp;
for (int i = 0; i < M.cols; ++i) {
temp = M.at<float>(k, i);
M.at<float>(k, i) = M.at<float>(l, i);
M.at<float>(l, i) = temp;
}
}
void printMatrix(cv::Mat A) {
cerr << "Matrix " << A.rows << "x" << A.cols << endl;
for (int i = 0; i < A.rows; ++i) {
for (int j = 0; j < A.cols; ++j) {
cerr << A.at<float>(i, j) << " ";
}
cerr << endl;
}
}
void printVector(float* x, int len) {
cerr << "Vector " << len << endl;
for (int i = 0; i < len; ++i) {
cerr << x[i] << " ";
}
cerr << endl;
}
void solveTDMatrixThomas(cv::Mat A, float* x) {
// Solve for x in the matrix equation Ax = b.
//
// The first `A.rows` columns of parameter A are the matrix A; the last
// column is the result vector b.
cv::Mat d = A.col(A.rows);
int n = A.rows;
for (int i = 0; i < n; ++i) {
assert(A.at<float>(i, i) != 0.f);
}
float m;
for (int k = 1; k < n; k++) {
// m = a_k / b_(k-1)
m = A.at<float>(k, k-1) / A.at<float>(k-1, k-1);
// b_k = b_k - m*c_(k-1)
A.at<float>(k, k) -= m * A.at<float>(k-1, k);
// d_k = d_k - m*d_(k-1)
d.at<float>(k) -= m * d.at<float>(k-1);
}
x[n-1] = d.at<float>(n-1) / A.at<float>(n-1, n-1);
for (int k = n-2; k >= 0; k--) {
x[k] = (d.at<float>(k) - A.at<float>(k, k+1) * x[k+1]) / A.at<float>(k, k);
}
}
void solveMatrixGaussJordan(cv::Mat A, float* x) {
int rows = A.rows;
for(int k=0; k<rows; k++) // column
{
// pivot for column
int i_max = 0;
double vali = -1;
for (int i=k; i<rows; i++)
{
if (abs(A.at<float>(i, k))>vali)
{
i_max = i;
vali = abs(A.at<float>(i, k));
}
}
swapRows(A, k, i_max);
// for all rows below pivot
for(int i=k+1; i<rows; i++)
{
double cf = (A.at<float>(i, k) / A.at<float>(k, k));
for (int j=k; j<rows+1; j++) {
A.at<float>(i, j) -= A.at<float>(k, j) * cf;
}
}
}
for(int i=rows-1; i>=0; i--) // rows = columns
{
double v = A.at<float>(i, rows) / A.at<float>(i, i);
x[i] = v;
for(int j=i-1; j>=0; j--) // rows
{
A.at<float>(j, rows) -= A.at<float>(j, i) * v;
A.at<float>(j, i) = 0;
}
}
}
void getNaturalKs(float* xs, int xCount, float* ys, float* ks)
{
cv::Mat A(xCount, xCount+1, CV_32F);
for(int x = 0; x < xCount; x++) {
for(int y = 0; y < xCount + 1; y ++) {
A.at<float>(x, y) = 0;
}
}
for(int i=1; i<xCount-1; i++) {
A.at<float>(i, i-1) = 1/(xs[i] - xs[i-1]);
A.at<float>(i, i) = 2 * (1/(xs[i] - xs[i-1]) + 1/(xs[i+1] - xs[i])) ;
A.at<float>(i, i+1) = 1/(xs[i+1] - xs[i]);
A.at<float>(i, xCount) = 3*( (ys[i]-ys[i-1])/((xs[i] - xs[i-1])*(xs[i] - xs[i-1])) + (ys[i+1]-ys[i])/ ((xs[i+1] - xs[i])*(xs[i+1] - xs[i])) );
}
A.at<float>(0, 0) = 2/(xs[1] - xs[0]);
A.at<float>(0, 1) = 1/(xs[1] - xs[0]);
A.at<float>(0, xCount) = 3 * (ys[1] - ys[0]) / ((xs[1]-xs[0])*(xs[1]-xs[0]));
A.at<float>(xCount-1, xCount-2) = 1/(xs[xCount-1] - xs[xCount-2]);
A.at<float>(xCount-1, xCount-1) = 2/(xs[xCount-1] - xs[xCount-2]);
A.at<float>(xCount-1, xCount) = 3 * (ys[xCount-1] - ys[xCount-2]) / ((xs[xCount-1]-xs[xCount-2])*(xs[xCount-1]-xs[xCount-2]));
solveTDMatrixThomas(A, ks);
}
float evaluateSpline(float x, float* xs, float *ys, float *ks)
{
int i = 1;
while(xs[i]<x) {
i++;
}
float t = (x - xs[i-1]) / (xs[i] - xs[i-1]);
float a = ks[i-1]*(xs[i]-xs[i-1]) - (ys[i]-ys[i-1]);
float b = -ks[i ]*(xs[i]-xs[i-1]) + (ys[i]-ys[i-1]);
float q = (1-t)*ys[i-1] + t*ys[i] + t*(1-t)*(a*(1-t)+b*t);
return q;
}
bool interpolateSplineRegular(float* inputX, float* inputY, int inputLength, float* outputY, int outputLength, float newSpacing, float initialOffset) {
LOCAL_TIMING_START();
if (inputLength < 4) {
// getNaturalKs may fail without inputLength of at least 4
return false;
}
float ks[inputLength];
float maxX = inputX[inputLength-1];
getNaturalKs(inputX, inputLength, inputY, ks);
int outputIndex;
for (outputIndex = 0; outputIndex < outputLength; ++outputIndex) {
float newX = inputX[0] + initialOffset + outputIndex * newSpacing;
if (newX > maxX) {
break;
}
outputY[outputIndex] = evaluateSpline(newX, inputX, inputY, ks);
}
LOCAL_TIMING_FINISH("interpolateSplineRegular");
return outputIndex == outputLength;
}
float max(cv::Mat mat)
{
float max = 0;
for (int i=0;i<mat.rows;i++)
{
float elem = mat.at<float>(i,0);
if (elem > max) {
max = elem;
}
}
return max;
}
double maxMean(cv::Mat mat, int windowSize)
{
if (windowSize>mat.rows) {
return 0;
}
cv::Mat rollingMeans = cv::Mat::zeros(mat.rows - windowSize, 1, CV_32F);
for (int i=0;i<=(mat.rows - windowSize);i++)
{
float sum = 0;
for (int j=0;j<windowSize;j++) {
sum += mat.at<float>(i+j,0);
}
rollingMeans.at<float>(i,0) = sum/windowSize;
}
double min, max;
cv::minMaxLoc(rollingMeans, &min, &max);
return max;
}
double skewness(cv::Mat mat)
{
cv::Scalar skewness,mean,stddev;
skewness.val[0]=0;
skewness.val[1]=0;
skewness.val[2]=0;
meanStdDev(mat,mean,stddev,cv::Mat());
int sum0, sum1, sum2;
float den0=0,den1=0,den2=0;
int N=mat.rows*mat.cols;
for (int i=0;i<mat.rows;i++)
{
for (int j=0;j<mat.cols;j++)
{
sum0=mat.ptr<uchar>(i)[3*j]-mean.val[0];
sum1=mat.ptr<uchar>(i)[3*j+1]-mean.val[1];
sum2=mat.ptr<uchar>(i)[3*j+2]-mean.val[2];
skewness.val[0]+=sum0*sum0*sum0;
skewness.val[1]+=sum1*sum1*sum1;
skewness.val[2]+=sum2*sum2*sum2;
den0+=sum0*sum0;
den1+=sum1*sum1;
den2+=sum2*sum2;
}
}
skewness.val[0]=skewness.val[0]*sqrt(N)/(den0*sqrt(den0));
skewness.val[1]=skewness.val[1]*sqrt(N)/(den1*sqrt(den1));
skewness.val[2]=skewness.val[2]*sqrt(N)/(den2*sqrt(den2));
return skewness.val[0];
}
double kurtosis(cv::Mat mat)
{
cv::Scalar kurt,mean,stddev;
kurt.val[0]=0;
kurt.val[1]=0;
kurt.val[2]=0;
meanStdDev(mat,mean,stddev,cv::Mat());
int sum0, sum1, sum2;
int N=mat.rows*mat.cols;
float den0=0,den1=0,den2=0;
for (int i=0;i<mat.rows;i++)
{
for (int j=0;j<mat.cols;j++)
{
sum0=mat.ptr<uchar>(i)[3*j]-mean.val[0];
sum1=mat.ptr<uchar>(i)[3*j+1]-mean.val[1];
sum2=mat.ptr<uchar>(i)[3*j+2]-mean.val[2];
kurt.val[0]+=sum0*sum0*sum0*sum0;
kurt.val[1]+=sum1*sum1*sum1*sum1;
kurt.val[2]+=sum2*sum2*sum2*sum2;
den0+=sum0*sum0;
den1+=sum1*sum1;
den2+=sum2*sum2;
}
}
kurt.val[0]= (kurt.val[0]*N*(N+1)*(N-1)/(den0*den0*(N-2)*(N-3)))-(3*(N-1)*(N-1)/((N-2)*(N-3)));
kurt.val[1]= (kurt.val[1]*N/(den1*den1))-3;
kurt.val[2]= (kurt.val[2]*N/(den2*den2))-3;
return kurt.val[0];
}
/**
* Compute area under the curve for an evenly spaced vector `y` of length `length`
*
* We assume unit steps on the X-axis. Multiply the return value by a scaling
* factor to convert to real-world measurements.
*/
float trapezoidArea(vector<float>::iterator start, vector<float>::iterator end)
{
float area = 0.0;
if (start != end) {
for (auto it = start + 1; it != end; it++) {
area += (*it + *(it - 1)) / 2.;
}
}
return area;
}
float percentile(float *input, int length, float percentile)
{
std::vector<float> sortedInput(length);
// using default comparison (operator <):
std::partial_sort_copy (input, input+length, sortedInput.begin(), sortedInput.end());
return sortedInput[cvFloor(length*percentile)-1];
}