-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path04_rankine_reheat_cycle-non-ideal.py
182 lines (147 loc) · 6.13 KB
/
04_rankine_reheat_cycle-non-ideal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@date: 10 December 2020
This source code is provided by Richard J Smith 'as is' and 'with all faults'. The provider makes no
representations or warranties of any kind concerning the safety, suitability, inaccuracies,
typographical errors, or other harmful components of this software.
"""
import matplotlib.pyplot as plt
import numpy as np
from pyXSteam.XSteam import XSteam
steamTable = XSteam(XSteam.UNIT_SYSTEM_MKS)
print('Rankine reheat cycle analysis (non ideal)')
p1 = 0.06
s1 = steamTable.sL_p(p1)
T1 = steamTable.t_ps(p1, s1)
h1 = steamTable.hL_p(p1)
print('\nPoint 1')
print(f"T1: {round(float(T1),1)} degC")
print(f"P1: {round(float(p1),1)} bar")
print(f"H1: {round(float(h1),1)} kJ/kg")
print(f"S1: {round(float(s1),3)} kJ/kg K")
p2 = 150
s2 = s1
v = 1/steamTable.rhoL_p(p1)
w_p = v*(p2-p1)
print('\nPoint 2')
h2 = h1+w_p
print(f"H2: {round(float(h2),1)} kJ/kg")
T2 = steamTable.t_ph(p2, h2)
print(f"T2: {round(float(T2),1)} degC")
h2dash = steamTable.hL_p(p2)
s2dash = steamTable.sL_p(p2)
T2dash = steamTable.t_ph(p2, h2dash)
print('\nPoint 2dash')
print(f"T2dash: {round(float(T2dash),1)} degC")
print(f"P2dash: {round(float(p2),1)} bar")
print(f"H2dash: {round(float(h2dash),1)} kJ/kg")
print(f"S2dash: {round(float(s2dash),3)} kJ/kg K")
h3dash = steamTable.hV_p(p2)
s3dash = steamTable.sV_p(p2)
T3dash = T2dash
print('\nPoint 3dash')
print(f"T3dash: {round(float(T3dash),1)} degC")
print(f"H3dash: {round(float(h3dash),1)} kJ/kg")
print(f"S3dash: {round(float(s3dash),3)} kJ/kg K")
p3 = p2
T3 = 540
h3 = steamTable.h_pt(p3, T3)
s3 = steamTable.s_pt(p3, T3)
print('\nPoint 3')
print(f"T3: {round(float(T3),1)} degC")
print(f"P3: {round(float(p3),1)} bar")
print(f"H3: {round(float(h3),1)} kJ/kg")
print(f"S3: {round(float(s3),3)} kJ/kg K")
p4 = p2/8
print(f"Reheat Pressure: {round(float(p4),1)} bar")
s4 = s3
T4 = steamTable.t_ps(p4, s4)
h4 = steamTable.h_pt(p4, T4)
HPturbeff = 0.90 # HP turbine isentropic efficiency can be entered here (typically 0.85 - 0.95)
h4r = h3 - (HPturbeff * h3) + (HPturbeff * h4)
s4r = steamTable.s_ph(p4, h4r)
T4r = steamTable.t_ps(p4, s4r)
print('\nPoint 4')
print(f"T4ideal: {round(float(T4),1)} degC")
print(f"T4real: {round(float(T4r),1)} degC")
print(f"P4: {round(float(p4),1)} bar")
print(f"H4ideal: {round(float(h4),1)} kJ/kg")
print(f"H4real: {round(float(h4r),1)} kJ/kg")
print(f"S4ideal: {round(float(s4),3)} kJ/kg K")
print(f"S4real: {round(float(s4r ),3)} kJ/kg K")
w_HPt = h3-h4r
p5 = p4
T5 = T3
h5 = steamTable.h_pt(p5, T5)
s5 = steamTable.s_pt(p5, T5)
print('\nPoint 5')
print(f"T5: {round(float(T5),1)} degC")
print(f"P5: {round(float(p5),1)} bar")
print(f"H5: {round(float(h5),1)} kJ/kg")
print(f"S5: {round(float(s5),3)} kJ/kg K")
p6 = p1
s6 = s5
T6 = steamTable.t_ps(p6, s6)
x6 = steamTable.x_ps(p6, s6)
h6 = steamTable.h_px(p6, x6)
print('\nPoint 6')
print(f"T6: {round(float(T6),1)} degC")
print(f"P6: {round(float(p6),1)} bar")
LPturbeff = 0.90 # IP/LP turbine isentropic efficiency can be entered here (typically 0.85 - 0.95)
h6r = h5 - (LPturbeff * h5) + (LPturbeff * h6)
print(f"H6ideal: {round(float(h6),1)} kJ/kg")
print(f"H6real: {round(float(h6r),1)} kJ/kg")
s6r = steamTable.s_ph(p6, h6r)
x6r = steamTable.x_ps(p6, s6r)
print(f"S6ideal: {round(float(s6),3)} kJ/kg K")
print(f"S6real: {round(float(s6r ),3)} kJ/kg K")
print(f"x6ideal: {round(float(x6),2)} ")
print(f"x6real: {round(float(x6r),2)} ")
print('\nSummary')
print(f"Work required by pump: {round(float(w_p),1)} kJ/kg")
print(f"Work generated by HP turbine: {round(float(w_HPt),1)} kJ/kg")
w_LPt = h5-h6r
print(f"Work generated by LP turbine: {round(float(w_LPt),1)} kJ/kg")
print(f"Total work output by turbine: {round(float(w_HPt+w_LPt),1)} kJ/kg")
q_H = (h3-h2)+(h5-h4r)
print(f"Heat input by boiler: {round(float(q_H),1)} kJ/kg")
q_L = h6r-h1
print(f"Heat rejected by the condenser: {round(float(q_L),1)} kJ/kg")
eta_th = (w_HPt+w_LPt-w_p)/q_H*100
print(f"Thermal efficiency is: {round(float(eta_th),1)}%")
HRcycle = 3600*100/eta_th
print(f"HR rankine cycle: {round(float(HRcycle),1)} kJ/kWh")
font = {'family' : 'Times New Roman',
'size' : 22}
plt.figure(figsize=(15,10))
plt.title('T-s Diagram - Rankine Reheat Cycle (non ideal)')
plt.rc('font', **font)
plt.ylabel('Temperature (C)')
plt.xlabel('Entropy (s)')
plt.xlim(-2,10)
plt.ylim(0,600)
T = np.linspace(0, 373.945, 400) # range of temperatures
# saturated vapor and liquid entropy lines
svap = [s for s in [steamTable.sL_t(t) for t in T]]
sliq = [s for s in [steamTable.sV_t(t) for t in T]]
plt.plot(svap, T, 'b-', linewidth=2.0)
plt.plot(sliq, T, 'r-', linewidth=2.0)
plt.plot([s1, s2, s2dash, s3dash, s3, s4r, s5, s6r, s1],[T1, T2, T2dash, T3dash, T3, T4r, T5, T6, T1], 'black', linewidth=2.0)
plt.text(s1-.1,T1,f'(1)\nT = {round(float(T1),2)} C\nP = {round(float(p1),1)} bar \nh = {round(float(h1),1)} kJ/kg\n s = {round(float(s1),3)} kJ/kgK',
ha='right',backgroundcolor='white')
plt.text(1.6,60,f'(2)\nT = {round(float(T2),2)} C\nP = {round(float(p2),1)} bar \nh = {round(float(h2),1)} kJ/kg',
ha='left',backgroundcolor='white')
plt.text(s2dash-.15,T2dash,f"(2')\nT = {round(float(T2dash),2)} C\nP = {round(float(p2),1)} bar \nh = {round(float(h2dash),1)} kJ/kg \ns = {round(float(s2dash),3)} kJ/kgK",
ha='right',backgroundcolor='white')
plt.text(s3dash-.1,T3dash-80,f"(3')\nh = {round(float(h3dash),1)} kJ/kg \ns = {round(float(s3dash),3)} kJ/kgK",
ha='right',backgroundcolor='white')
plt.text(6.3,T3-50,f'(3)\nT = {round(float(T3),2)} C\nh = {round(float(h3),1)} kJ/kg \ns = {round(float(s3),3)} kJ/kgK',
ha='right',backgroundcolor='white')
plt.text(s4-.1,T4r-120,f'(4)\nT = {round(float(T4r),2)} C\nP = {round(float(p4),1)} bar \nh = {round(float(h4r),1)} kJ/kg \ns = {round(float(s4r),3)} kJ/kgK',
ha='right',backgroundcolor='white')
plt.text(s5+.2,T5-70,f'(5)\nT = {round(float(T5),2)} C\nh = {round(float(h5),1)} kJ/kg \ns = {round(float(s5),3)} kJ/kgK',
ha='left',backgroundcolor='white')
plt.text(s6r+.1,T6,f'(6)\nT = {round(float(T6),2)} C\nh = {round(float(h6r),1)} kJ/kg \ns = {round(float(s6r),3)} kJ/kgK \nx = {round(float(x6r),3)}',
ha='left',backgroundcolor='white')
plt.savefig('04-rankine-reheat-cycle-non-ideal-TSdiagram.png')