-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapp.py
200 lines (162 loc) · 6.16 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import re
from pathlib import Path
from typing import List, Optional
import pandas as pd
import streamlit as st
from docarray import BaseDoc
from docarray.index import InMemoryExactNNIndex
from docarray.typing import TorchTensor
from transformers import pipeline
INDEX_PATH = Path(__file__).parent.joinpath("data/index.bin")
@st.cache_resource(show_spinner="Loading dataset...")
def load_index():
class RepoDoc(BaseDoc):
name: str
topics: List[str]
stars: int
license: str
code_embedding: Optional[TorchTensor[768]]
doc_embedding: Optional[TorchTensor[768]]
default_doc = RepoDoc(
name="",
topics=[],
stars=0,
license="",
code_embedding=None,
doc_embedding=None,
)
return InMemoryExactNNIndex[RepoDoc](index_file_path=INDEX_PATH), default_doc
@st.cache_resource(show_spinner="Loading RepoSim pipeline...")
def load_model():
return pipeline(
model="Lazyhope/RepoSim",
trust_remote_code=True,
device_map="auto",
)
@st.cache_data(show_spinner=False)
def run_model(_model, repo_name, github_token):
with st.spinner(
f"Downloading and extracting the {repo_name}, this may take a while..."
):
extracted_infos = _model.preprocess(repo_name, github_token=github_token)
if not extracted_infos:
return None
with st.spinner(f"Generating embeddings for {repo_name}..."):
repo_info = _model.forward(extracted_infos, st_progress=st.progress(0.0))[0]
return repo_info
def run_search(index, query, search_field, limit):
top_matches, scores = index.find(
query=query, search_field=search_field, limit=limit
)
search_results = top_matches.to_dataframe()
search_results["scores"] = scores
return search_results
index, default_doc = load_index()
model = load_model()
with st.sidebar:
st.text_input(
label="GitHub Token",
key="github_token",
type="password",
placeholder="Paste your GitHub token here",
help="Consider setting GitHub token to avoid hitting rate limits: https://docs.github.com/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token",
)
st.slider(
label="Search results limit",
min_value=1,
max_value=100,
value=10,
step=1,
key="search_results_limit",
help="Limit the number of search results",
)
st.multiselect(
label="Display columns",
options=["scores", "name", "topics", "stars", "license"],
default=["scores", "name", "topics", "stars", "license"],
help="Select columns to display in the search results",
key="display_columns",
)
repo_regex = r"^((git@|http(s)?://)?(github\.com)(/|:))?(?P<owner>[\w.-]+)(/)(?P<repo>[\w.-]+?)(\.git)?(/)?$"
st.title("RepoSnipy")
st.text_input(
"Enter a GitHub repo URL or owner/repo (case-sensitive):",
value="",
max_chars=200,
placeholder="numpy/numpy",
key="repo_input",
)
st.checkbox(
label="Add/Update this repo to the index",
value=False,
key="update_index",
help="Encode the latest version of this repo and add/update it to the index",
)
search = st.button("Search")
if search:
match_res = re.match(repo_regex, st.session_state.repo_input)
if match_res is not None:
repo_name = f"{match_res.group('owner')}/{match_res.group('repo')}"
records = index.filter({"name": {"$eq": repo_name}})
query_doc = default_doc.copy() if not records else records[0]
if st.session_state.update_index or not records:
repo_info = run_model(model, repo_name, st.session_state.github_token)
if repo_info is None:
st.error("Repo not found or invalid GitHub token!")
st.stop()
# Update document inplace
query_doc.name = repo_info["name"]
query_doc.topics = repo_info["topics"]
query_doc.stars = repo_info["stars"]
query_doc.license = repo_info["license"]
query_doc.code_embedding = repo_info["mean_code_embedding"]
query_doc.doc_embedding = repo_info["mean_doc_embedding"]
if st.session_state.update_index:
if not records:
if not query_doc.license:
st.warning(
"License is missing in this repo and will not be persisted!"
)
elif (
query_doc.code_embedding is None and query_doc.doc_embedding is None
):
st.warning(
"This repo has no function code or docstring extracted and will not be persisted!"
)
else:
index.index(query_doc)
st.success("Repo added to the index!")
else:
st.success("Repo updated in the index!")
with st.spinner("Persisting the index..."):
index.persist(file=INDEX_PATH)
st.session_state["query_doc"] = query_doc
else:
st.error("Invalid input!")
if "query_doc" in st.session_state:
query_doc = st.session_state.query_doc
limit = st.session_state.search_results_limit
st.dataframe(
pd.DataFrame(
[
{
"name": query_doc.name,
"topics": query_doc.topics,
"stars": query_doc.stars,
"license": query_doc.license,
}
],
)
)
display_columns = st.session_state.display_columns
code_sim_tab, doc_sim_tab = st.tabs(["Code Similarity", "Docstring Similarity"])
if query_doc.code_embedding is not None:
code_sim_res = run_search(index, query_doc, "code_embedding", limit)
code_sim_tab.dataframe(code_sim_res[display_columns])
else:
code_sim_tab.error("No function code was extracted for this repo!")
if query_doc.doc_embedding is not None:
doc_sim_res = run_search(index, query_doc, "doc_embedding", limit)
doc_sim_tab.dataframe(doc_sim_res[display_columns])
else:
doc_sim_tab.error("No function docstring was extracted for this repo!")