-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
executable file
·364 lines (310 loc) · 15.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
torch.set_default_tensor_type('torch.cuda.FloatTensor')
class Backbone_Proposal(torch.nn.Module):
"""
Backbone for single modal in P-MIL framework
"""
def __init__(self, feat_dim, n_class, dropout_ratio, roi_size):
super().__init__()
embed_dim = feat_dim // 2
self.roi_size = roi_size
self.prop_fusion = nn.Sequential(
nn.Linear(feat_dim * 3, feat_dim),
nn.ReLU(),
nn.Dropout(dropout_ratio),
)
self.prop_classifier = nn.Sequential(
nn.Conv1d(feat_dim, embed_dim, 1),
nn.ReLU(),
nn.Conv1d(embed_dim, n_class+1, 1),
)
self.prop_attention = nn.Sequential(
nn.Conv1d(feat_dim, embed_dim, 1),
nn.ReLU(),
nn.Conv1d(embed_dim, 1, 1),
)
self.prop_completeness = nn.Sequential(
nn.Conv1d(feat_dim, embed_dim, 1),
nn.ReLU(),
nn.Conv1d(embed_dim, 1, 1),
)
def forward(self, feat):
"""
Inputs:
feat: tensor of size [B, M, roi_size, D]
Outputs:
prop_cas: tensor of size [B, C, M]
prop_attn: tensor of size [B, 1, M]
prop_iou: tensor of size [B, 1, M]
"""
feat1 = feat[:, :, : self.roi_size//6 , :].max(2)[0]
feat2 = feat[:, :, self.roi_size//6 : self.roi_size//6*5, :].max(2)[0]
feat3 = feat[:, :, self.roi_size//6*5: , :].max(2)[0]
feat = torch.cat((feat2-feat1, feat2, feat2-feat3), dim=2)
feat_fuse = self.prop_fusion(feat) # [B, M, D]
feat_fuse = feat_fuse.transpose(-1, -2) # [B, D, M]
prop_cas = self.prop_classifier(feat_fuse) # [B, C, M]
prop_attn = self.prop_attention(feat_fuse) # [B, 1, M]
prop_iou = self.prop_completeness(feat_fuse) # [B, 1, M]
return prop_cas, prop_attn, prop_iou
class P_MIL(torch.nn.Module):
"""
PyTorch module for the Proposal-based Multiple Instance Learning (P-MIL) framework
"""
def __init__(self, args):
super().__init__()
n_class = args.num_class
dropout_ratio = args.dropout_ratio
self.feat_dim = args.feature_size
self.max_proposal = args.max_proposal
self.roi_size = args.roi_size
self.prop_v_backbone = Backbone_Proposal(self.feat_dim // 2, n_class, dropout_ratio, self.roi_size)
self.prop_f_backbone = Backbone_Proposal(self.feat_dim // 2, n_class, dropout_ratio, self.roi_size)
def extract_roi_features(self, features, proposals, is_training):
"""
Extract region of interest (RoI) features from raw i3d features based on given proposals
Inputs:
features: list of [T, D] tensors
proposals: list of [M, 2] tensors
is_training: bool
Outputs:
prop_features:tensor of size [B, M, roi_size, D]
prop_mask: tensor of size [B, M]
"""
num_prop = torch.tensor([prop.shape[0] for prop in proposals])
batch, max_num = len(proposals), num_prop.max()
# Limit the max number of proposals during training
if is_training:
max_num = min(max_num, self.max_proposal)
prop_features = torch.zeros((batch, max_num, self.roi_size, self.feat_dim)).to(features[0].device)
prop_mask = torch.zeros((batch, max_num)).to(features[0].device)
for i in range(batch):
feature = features[i]
proposal = proposals[i]
if num_prop[i] > max_num:
sampled_idx = torch.randperm(num_prop[i])[:max_num]
proposal = proposal[sampled_idx]
# Extend the proposal by 25% of its length at both sides
start, end = proposal[:, 0], proposal[:, 1]
len_prop = end - start
start_ext = start - 0.25 * len_prop
end_ext = end + 0.25 * len_prop
# Fill in blank at edge of the feature, offset 0.5, for more accurate RoI_Align results
fill_len = torch.ceil(0.25 * len_prop.max()).long() + 1 # +1 because of offset 0.5
fill_blank = torch.zeros(fill_len, self.feat_dim).to(feature.device)
feature = torch.cat([fill_blank, feature, fill_blank], dim=0)
start_ext = start_ext + fill_len - 0.5
end_ext = end_ext + fill_len - 0.5
proposal_ext = torch.stack((start_ext, end_ext), dim=1)
# Extract RoI features using RoI Align operation
y1, y2 = proposal_ext[:, 0], proposal_ext[:, 1]
x1, x2 = torch.zeros_like(y1), torch.ones_like(y2)
boxes = torch.stack((x1, y1, x2, y2), dim=1) # [M, 4]
feature = feature.transpose(0, 1).unsqueeze(0).unsqueeze(3) # [1, D, T, 1]
feat_roi = torchvision.ops.roi_align(feature, [boxes], [self.roi_size, 1]) # [M, D, roi_size, 1]
feat_roi = feat_roi.squeeze(3).transpose(1, 2) # [M, roi_size, D]
prop_features[i, :proposal.shape[0], :, :] = feat_roi # [B, M, roi_size, D]
prop_mask[i, :proposal.shape[0]] = 1 # [B, M]
return prop_features, prop_mask
def forward(self, features, proposals, is_training=True):
"""
Inputs:
features: list of [T, D] tensors
proposals: list of [M, 2] tensors
is_training: bool
Outputs:
outputs: dictionary
"""
prop_features, prop_mask = self.extract_roi_features(features, proposals, is_training)
prop_v_features = prop_features[..., :self.feat_dim // 2]
prop_f_features = prop_features[..., self.feat_dim // 2:]
prop_v_cas, prop_v_attn, prop_v_iou = self.prop_v_backbone(prop_v_features)
prop_f_cas, prop_f_attn, prop_f_iou = self.prop_f_backbone(prop_f_features)
outputs = {
'prop_v_cas': prop_v_cas.transpose(-1, -2), # [B, M, C]
'prop_f_cas': prop_f_cas.transpose(-1, -2), # [B, M, C]
'prop_v_attn': prop_v_attn.transpose(-1, -2), # [B, M, 1]
'prop_f_attn': prop_f_attn.transpose(-1, -2), # [B, M, 1]
'prop_v_iou': prop_v_iou.transpose(-1, -2), # [B, M, 1]
'prop_f_iou': prop_f_iou.transpose(-1, -2), # [B, M, 1]
'prop_mask': prop_mask, # [B, M]
}
return outputs
def get_consistency_weight(self, current, rampup_length):
"""
Exponential rampup from https://arxiv.org/abs/1610.02242
"""
if rampup_length == 0:
return 1.0
else:
current = np.clip(current, 0.0, rampup_length)
phase = 1.0 - current / rampup_length
return float(np.exp(-5.0 * phase * phase))
def segments_iou(self, segments1, segments2):
"""
Inputs:
segments1: tensor of size [M1, 2]
segments2: tensor of size [M2, 2]
Outputs:
iou_temp: tensor of size [M1, M2]
"""
segments1 = segments1.unsqueeze(1) # [M1, 1, 2]
segments2 = segments2.unsqueeze(0) # [1, M2, 2]
tt1 = torch.maximum(segments1[..., 0], segments2[..., 0]) # [M1, M2]
tt2 = torch.minimum(segments1[..., 1], segments2[..., 1]) # [M1, M2]
intersection = tt2 - tt1
union = (segments1[..., 1] - segments1[..., 0]) + (segments2[..., 1] - segments2[..., 0]) - intersection
iou = intersection / (union + 1e-6) # [M1, M2]
# Remove negative values
iou_temp = torch.zeros_like(iou)
iou_temp[iou > 0] = iou[iou > 0]
return iou_temp
def criterion(self, outputs, labels, proposals, epoch, args):
"""
Compute the total loss function
Inputs:
outputs: dictionary
labels: tensor of size [B, C]
proposals: list of [M, 2] tensors
epoch: int
args: argparse.Namespace
Outputs:
loss_dict: dictionary
"""
prop_v_cas, prop_v_attn, prop_v_iou = outputs['prop_v_cas'], outputs['prop_v_attn'], outputs['prop_v_iou']
prop_f_cas, prop_f_attn, prop_f_iou = outputs['prop_f_cas'], outputs['prop_f_attn'], outputs['prop_f_iou']
prop_mask = outputs['prop_mask']
prop_v_attn = torch.sigmoid(prop_v_attn) # [B, M, 1]
prop_f_attn = torch.sigmoid(prop_f_attn) # [B, M, 1]
prop_v_iou = torch.sigmoid(prop_v_iou) # [B, M, 1]
prop_f_iou = torch.sigmoid(prop_f_iou) # [B, M, 1]
prop_mask = prop_mask.unsqueeze(2).bool() # [B, M, 1]
prop_mask_cas = prop_mask.repeat((1, 1, prop_v_cas.shape[2])) # [B, M, C]
# proposal classification loss
prop_v_cas_supp = prop_v_cas * prop_v_attn
prop_f_cas_supp = prop_f_cas * prop_f_attn
loss_prop_mil_orig_v = self.prop_topk_loss(prop_v_cas, labels, prop_mask_cas, is_back=True, topk=args.k)
loss_prop_mil_orig_f = self.prop_topk_loss(prop_f_cas, labels, prop_mask_cas, is_back=True, topk=args.k)
loss_prop_mil_supp_v = self.prop_topk_loss(prop_v_cas_supp, labels, prop_mask_cas, is_back=False, topk=args.k)
loss_prop_mil_supp_f = self.prop_topk_loss(prop_f_cas_supp, labels, prop_mask_cas, is_back=False, topk=args.k)
# Instance-level Rank Consistency (IRC) loss
loss_prop_irc_v = self.prop_irc_loss(prop_v_cas, prop_f_cas, prop_f_attn, labels, prop_mask, prop_mask_cas, proposals)
loss_prop_irc_f = self.prop_irc_loss(prop_f_cas, prop_v_cas, prop_v_attn, labels, prop_mask, prop_mask_cas, proposals)
# proposal completeness loss
loss_prop_comp_v = self.prop_comp_loss(prop_v_iou, prop_f_attn, prop_mask, proposals, args.gamma)
loss_prop_comp_f = self.prop_comp_loss(prop_f_iou, prop_v_attn, prop_mask, proposals, args.gamma)
loss_prop_mil_orig = args.weight_loss_prop_mil_orig * (loss_prop_mil_orig_v + loss_prop_mil_orig_f) / 2
loss_prop_mil_supp = args.weight_loss_prop_mil_supp * (loss_prop_mil_supp_v + loss_prop_mil_supp_f) / 2
loss_prop_irc = args.weight_loss_prop_irc * (loss_prop_irc_v + loss_prop_irc_f) / 2 * self.get_consistency_weight(epoch, args.rampup_length)
loss_prop_comp = args.weight_loss_prop_comp * (loss_prop_comp_v + loss_prop_comp_f) / 2 * self.get_consistency_weight(epoch, args.rampup_length)
loss_total = loss_prop_mil_orig + loss_prop_mil_supp + loss_prop_irc + loss_prop_comp
loss_dict = {
'loss_total': loss_total,
'loss_prop_mil_orig': loss_prop_mil_orig,
'loss_prop_mil_supp': loss_prop_mil_supp,
'loss_prop_irc': loss_prop_irc,
'loss_prop_comp': loss_prop_comp,
}
return loss_dict
def prop_topk_loss(self, cas, labels, mask_cas, is_back=True, topk=8):
"""
Compute the topk classification loss
Inputs:
cas: tensor of size [B, M, C]
labels: tensor of size [B, C]
mask_cas: tensor of size [B, M, C]
is_back: bool
topk: int
Outputs:
loss_mil: tensor
"""
if is_back:
labels_with_back = torch.cat((labels, torch.ones_like(labels[:, [0]])), dim=-1)
else:
labels_with_back = torch.cat((labels, torch.zeros_like(labels[:, [0]])), dim=-1)
labels_with_back = labels_with_back / (torch.sum(labels_with_back, dim=-1, keepdim=True) + 1e-4)
loss_mil = 0
for b in range(cas.shape[0]):
cas_b = cas[b][mask_cas[b]].reshape((-1, cas.shape[-1]))
topk_val, _ = torch.topk(cas_b, k=max(1, int(cas_b.shape[-2] // topk)), dim=-2)
video_score = torch.mean(topk_val, dim=-2)
loss_mil += - (labels_with_back[b] * F.log_softmax(video_score, dim=-1)).sum(dim=-1).mean()
loss_mil /= cas.shape[0]
return loss_mil
def prop_irc_loss(self, cas_stu, cas_tea, attn, labels, mask, mask_cas, proposals):
"""
Compute the Instance-level Rank Consistency (IRC) loss
Inputs:
cas_stu: tensor of size [B, M, C]
cas_tea: tensor of size [B, M, C]
attn: tensor of size [B, M, 1]
labels: tensor of size [B, C]
mask: bool tensor of size [B, M, 1]
mask_cas: bool tensor of size [B, M, C]
proposals: list of [M, 2] tensors
Outputs:
loss_irc: tensor
"""
loss_irc = 0
for b in range(len(proposals)):
attn_b = attn[b][mask[b]]
cas_stu_b = cas_stu[b][mask_cas[b]].reshape((-1, mask_cas.shape[-1]))
cas_tea_b = cas_tea[b][mask_cas[b]].reshape((-1, mask_cas.shape[-1]))
proposals_iou = self.segments_iou(proposals[b], proposals[b])
# used to mask out non-overlapping proposals
proposals_mask = torch.zeros_like(proposals_iou)
proposals_mask[proposals_iou <= 0] = -1e3
proposals_mask[proposals_iou > 0] = 0
loss_irc_b = 0
for c in torch.where(labels[b])[0]:
score_stu = cas_stu_b[:, c]
score_tea = cas_tea_b[:, c]
# the KL loss is only computed for proposals that overlap with the given proposal
softmax_tea = F.softmax(proposals_mask + score_tea.unsqueeze(0), dim=1)
softmax_stu = F.log_softmax(proposals_mask + score_stu.unsqueeze(0), dim=1)
loss_kl_matrix = F.kl_div(softmax_stu, softmax_tea.detach(), reduction='none').sum(-1)
# eliminate the low-confidence proposals
retained = attn_b > torch.mean(attn_b)
loss_irc_b += loss_kl_matrix[retained].mean()
loss_irc_b /= labels[b].sum()
loss_irc += loss_irc_b
loss_irc /= len(proposals)
return loss_irc
def prop_comp_loss(self, pred_iou, attn, mask, proposals, gamma):
"""
Compute the completeness loss
Inputs:
pred_iou: tensor of size [B, M, 1]
attn: tensor of size [B, M, 1]
mask: bool tensor of size [B, M, 1]
proposals: list of [M, 2] tensors
gamma: float
Outputs:
loss_comp: tensor
"""
loss_comp = 0
for b in range(len(proposals)):
attn_b = attn[b][mask[b]]
pred_iou_b = pred_iou[b][mask[b]]
proposals_iou = self.segments_iou(proposals[b], proposals[b])
proposals_mask = proposals_iou > 0
# using NMS to select the pseudo instances, the running speed is slow
choiced = []
retained = attn_b > gamma * torch.max(attn_b)
while retained.sum() > 0:
max_idx = torch.max(attn_b[retained], dim=0)[1]
max_idx = torch.where(retained)[0][max_idx]
overlap = proposals_mask[max_idx]
retained[overlap] = False
choiced.append(max_idx)
choiced = torch.stack(choiced, dim=0)
pseudo_instances = proposals[b][choiced]
pseudo_iou = self.segments_iou(proposals[b], pseudo_instances)
pseudo_iou = torch.max(pseudo_iou, dim=1)[0]
loss_comp += F.mse_loss(pred_iou_b, pseudo_iou)
loss_comp /= len(proposals)
return loss_comp