forked from rodrigob/circulant_matrix_tracker
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcirculant_matrix_tracker.py
executable file
·294 lines (218 loc) · 9.96 KB
/
circulant_matrix_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import os.path
from optparse import OptionParser
import results
import pylab
import loader
import time
import torch
import numpy as np
from descriptors import raw_gray_descriptor, hardnet_descriptor, hog_descriptor
# parameters according to the paper --
class kcf_params:
padding = 1.0 # extra area surrounding the target
# spatial bandwidth (proportional to target)
output_sigma_factor = 1 / float(16)
sigma = 0.2 # gaussian kernel bandwidth
lambda_value = 1e-2 # regularization
# linear interpolation factor for adaptation
interpolation_factor = 0.075
def get_subwindow(image, box):
xs = pylab.floor(box[0]) \
+ pylab.arange(box[4], dtype=int) - pylab.floor(box[4] / 2)
ys = pylab.floor(box[1]) \
+ pylab.arange(box[5], dtype=int) - pylab.floor(box[5] / 2)
xs = xs.astype(int)
ys = ys.astype(int)
xs[xs < 0] = 0
xs[xs >= image.shape[1]] = image.shape[1] - 1
ys[ys < 0] = 0
ys[ys >= image.shape[0]] = image.shape[0] - 1
return image[pylab.ix_(ys, xs, range(image.shape[2]))]
def apply_cos_window(channels):
global cos_window
if cos_window is None:
cos_window = pylab.outer(pylab.hanning(channels.shape[1]), pylab.hanning(channels.shape[2]))
return pylab.multiply(channels[:] - 0.5, cos_window)
def dense_gauss_kernel(sigma, x, y=None):
xf = pylab.fft2(x) # x in Fourier domain
x_flat = x.flatten()
xx = pylab.dot(x_flat.transpose(), x_flat) # squared norm of x
if y is not None:
yf = pylab.fft2(y)
y_flat = y.flatten()
yy = pylab.dot(y_flat.transpose(), y_flat)
else:
yf = xf
yy = xx
xyf = pylab.multiply(xf, pylab.conj(yf))
xyf_ifft = pylab.ifft2(xyf)
row_shift, col_shift = pylab.floor(pylab.array(x.shape) / 2).astype(int)
xy_complex = pylab.roll(xyf_ifft, row_shift, axis=0)
xy_complex = pylab.roll(xy_complex, col_shift, axis=1)
xy = pylab.real(xy_complex)
scaling = -1 / (sigma ** 2)
xx_yy = xx + yy
xx_yy_2xy = xx_yy - 2 * xy
k = pylab.exp(scaling * pylab.maximum(0, xx_yy_2xy / x.size))
return k
def crop(channels):
halfExtend = 5
halfW = channels.shape[1] / 2
halfH = channels.shape[2] / 2
return channels
# return channels[:, halfW - halfExtend:halfW + halfExtend, halfH - halfExtend:halfH + halfExtend]
# return channels[:, 14:-14, 14:-14]
def distance_matrix_vector(anchor, positive):
"""Given batch of anchor descriptors and positive descriptors calculate distance matrix"""
d1_sq = torch.sum(anchor * anchor, dim=1).unsqueeze(-1)
d2_sq = torch.sum(positive * positive, dim=1).unsqueeze(-1)
eps = 1e-6
return torch.sqrt((d1_sq.repeat(1, positive.size(0)) + torch.t(d2_sq.repeat(1, anchor.size(0)))
- 2.0 * torch.bmm(anchor.unsqueeze(0), torch.t(positive).unsqueeze(0)).squeeze(0)) + eps)
def track(descriptor):
global options
desc_channel_count = descriptor.initialize(options.use_gpu)
roi = loader.track_bounding_box_from_first_frame()
roi = [roi[0] + roi[2] / 2, roi[1] + roi[3] / 2, roi[2], roi[3], roi[2] * (1 + kcf_params.padding),
roi[3] * (1 + kcf_params.padding)]
output_sigma = pylab.sqrt(pylab.prod([roi[3], roi[2]])) * kcf_params.output_sigma_factor
avg_count = 0
global cos_window
cos_window = None
template = [None for i in range(desc_channel_count)]
alpha_f = [None for i in range(desc_channel_count)]
response = [None for i in range(desc_channel_count)]
yf = None
track_time = 0
full_track_time = time.time()
while loader.has_next_frame():
im = loader.next_frame()
if (loader.frame_number() % 10) == 0:
print("Processing frame {}".format(loader.frame_number()))
start_time = time.time()
is_first_frame = loader.frame_number() == 0
cropped = get_subwindow(im, roi)
channels = descriptor.describe(cropped)
subwindow = apply_cos_window(channels)
subwindow = crop(subwindow)
dmv = None
if is_first_frame:
grid_y = pylab.arange(subwindow.shape[1]) - pylab.floor(subwindow.shape[1] / 2)
grid_x = pylab.arange(subwindow.shape[2]) - pylab.floor(subwindow.shape[2] / 2)
rs, cs = pylab.meshgrid(grid_x, grid_y)
y = pylab.exp(-0.5 / output_sigma ** 2 * (rs ** 2 + cs ** 2))
yf = pylab.fft2(y)
else:
for i in range(0, subwindow.shape[0]):
channel = subwindow[i, :, :]
# calculate response of the classifier at all locations
k = dense_gauss_kernel(kcf_params.sigma, channel, template[i])
kf = pylab.fft2(k)
alphaf_kf = pylab.multiply(alpha_f[i], kf)
response[i] = pylab.real(pylab.ifft2(alphaf_kf)) # Eq. 9
# argmax = response[i].argmax()
#
# if response[i].item(argmax) != 0:
# tmp = pylab.unravel_index(argmax, response[i].shape)
# if value < response[i][tmp[0],tmp[1]]:
# avg_x = tmp[1]
# avg_y = tmp[0]
# avg_count = 1
# value = response[i][tmp[0],tmp[1]]
# chosen_i = i
anchor = torch.tensor(channels[:, channels.shape[1] / 2, channels.shape[2] / 2]).unsqueeze(0)
points = torch.tensor(response).view(channels.shape[0], -1).t()
dmv = distance_matrix_vector(anchor, points).view(channels.shape[1], channels.shape[2])
argmax = np.array(dmv).argmax()
tmp = pylab.unravel_index(argmax, subwindow.shape[1:])
moved_by = [float(tmp[0]) - float(subwindow.shape[1]) / 2,
float(tmp[1]) - float(subwindow.shape[2]) / 2]
roi = descriptor.update_roi(roi, moved_by)
cropped = get_subwindow(im, roi)
channels = descriptor.describe(cropped)
subwindow = apply_cos_window(channels)
subwindow = crop(subwindow)
for i in range(0, subwindow.shape[0]):
channel = subwindow[i, :, :]
k = dense_gauss_kernel(kcf_params.sigma, channel)
new_alpha_f = pylab.divide(yf, (pylab.fft2(k) + kcf_params.lambda_value)) # Eq. 7
new_template = channel
if is_first_frame:
alpha_f[i] = new_alpha_f
template[i] = new_template
else:
f = kcf_params.interpolation_factor
alpha_f[i] = (1 - f) * alpha_f[i] + f * new_alpha_f
template[i] = (1 - f) * template[i] + f * new_template
track_time += time.time() - start_time
results.log_tracked(im, roi, False, template[0], dmv)
# end of "for each image in video"
results.log_meta("speed.frames_tracked", loader.frame_number())
results.log_meta("speed.track_no_io_time", str(track_time) + "s")
results.log_meta("speed.track_no_io_fps", loader.frame_number() / track_time)
results.log_meta("speed.track_no_init_time", str(time.time() - full_track_time) + "s")
results.show_precision()
return
def parse_arguments():
parser = OptionParser()
parser.description = "This program will track objects in image sequences"
parser.add_option("-i", "--input", dest="input_path",
metavar="PATH", type="string", default=None,
help="path to a folder with dataset")
parser.add_option("-o", "--output", dest="output_path",
metavar="PATH", type="string", default=None,
help="path to a folder to which output images should be stored. If none is supplied, default will be created")
parser.add_option("--note", dest="note",
type="string", default=None,
help="optional note that will get passed to output data")
parser.add_option("-g", "--use-gpu", dest="use_gpu",
action="store_true",
help="try to run on gpu, where applies")
parser.add_option("-d", "--descriptor", dest="descriptor",
action="store", type="string", default="raw",
help="Set descriptor to run with")
(options, args) = parser.parse_args()
if not options.input_path:
parser.error("'input' option is required to run this program")
if not os.path.exists(options.input_path):
parser.error("Could not find the input data set in %s" % options.video_path)
return options
def main():
global options
run_time = time.time()
options = parse_arguments()
loader.load(options.input_path, options.output_path)
if options.descriptor.lower() == "raw" or \
options.descriptor.lower() == "gray" or \
options.descriptor.lower() == "grey":
descriptor = raw_gray_descriptor
elif options.descriptor.lower() == "hardnet":
descriptor = hardnet_descriptor
elif options.descriptor.lower() == "hog":
descriptor = hog_descriptor
else:
raise Exception("Unknown descriptor '{}'".format(options.descriptor))
results.log_meta("descriptor", descriptor.get_name())
results.log_meta("dataset", options.input_path)
if options.note is not None:
results.log_meta("note", options.note)
if options.use_gpu:
results.log_meta("use_gpu", "true")
else:
results.log_meta("use_gpu", "false")
results.log_meta("tracker.padding", kcf_params.padding)
results.log_meta("tracker.interpolation_factor", kcf_params.interpolation_factor)
results.log_meta("tracker.lambda", kcf_params.lambda_value)
results.log_meta("tracker.sigma", kcf_params.sigma)
results.log_meta("tracker.output_sigma_factor", kcf_params.output_sigma_factor)
track(descriptor)
run_time -= time.time()
run_time *= -1
results.log_meta("speed.total_run_time", str(run_time) + "s")
print("Finished in {}s".format(run_time))
return
if __name__ == "__main__":
main()