From 1c1e8e474bc268a8900b5de09908937247d75b5e Mon Sep 17 00:00:00 2001 From: MarkGoldman Date: Mon, 26 Aug 2019 21:52:44 -0400 Subject: [PATCH 1/4] Use correct energy and output debug message about energy origin Previously the gaussian log file would read the SCF energy if coupled cluster or similar methods were being used. This would increase the error in calculation. This commit allows for the correct energy to be obtained from MP2, CCSD, and CCSD(T) methods. It also adds a debug message which specifies what type of energy is being taken from the log file. --- arkane/gaussian.py | 14 +++++++++++++- 1 file changed, 13 insertions(+), 1 deletion(-) diff --git a/arkane/gaussian.py b/arkane/gaussian.py index a514df546a..cff8108c0d 100644 --- a/arkane/gaussian.py +++ b/arkane/gaussian.py @@ -265,13 +265,23 @@ def load_energy(self, zpe_scale_factor=1.): CBS-QB3 value. """ e_elect, e0_composite, scaled_zpe = None, None, None - + elect_energy_source = '' with open(self.path, 'r') as f: line = f.readline() while line != '': if 'SCF Done:' in line: e_elect = float(line.split()[4]) * constants.E_h * constants.Na + elect_energy_source = 'SCF' + elif 'MP2 =' in line: + e_elect = float(line.split()[-1].replace('D','E')) * constants.E_h * constants.Na + elect_energy_source = 'MP2' + elif 'E(CORR)=' in line: + e_elect = float(line.split()[3]) * constants.E_h * constants.Na + elect_energy_source = 'CCSD' + elif 'CCSD(T)=' in line: + e_elect = float(line.split()[1].replace('D','E')) * constants.E_h * constants.Na + elect_energy_source = 'CCSD(T)' elif 'CBS-QB3 (0 K)' in line: e0_composite = float(line.split()[3]) * constants.E_h * constants.Na elif 'G3(0 K)' in line: @@ -294,10 +304,12 @@ def load_energy(self, zpe_scale_factor=1.): line = f.readline() if e0_composite is not None: + logging.debug("Using the composite energy from the gaussian output file") if scaled_zpe is None: raise LogError('Unable to find zero-point energy in Gaussian log file.') return e0_composite - scaled_zpe elif e_elect is not None: + logging.debug("Using the {0} energy from the gaussian output file".format(elect_energy_source)) return e_elect else: raise LogError('Unable to find energy in Gaussian log file.') From 490ab5f3cd69ef2d0e807199182ad75a7ed7a64b Mon Sep 17 00:00:00 2001 From: Duminda Date: Thu, 7 Nov 2019 17:12:46 -0500 Subject: [PATCH 2/4] parse MP2, double hybrid, CCSD, and CCSD(T) and return e0 --- arkane/gaussian.py | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/arkane/gaussian.py b/arkane/gaussian.py index cff8108c0d..c2a7b74657 100644 --- a/arkane/gaussian.py +++ b/arkane/gaussian.py @@ -45,6 +45,7 @@ from arkane.exceptions import LogError from arkane.log import Log + ################################################################################ @@ -212,7 +213,7 @@ def load_conformer(self, symmetry=None, spin_multiplicity=0, optical_isomers=Non elif 'Rotational constant (GHZ):' in line: inertia = [float(line.split()[3])] inertia[0] = constants.h / (8 * constants.pi * constants.pi * inertia[0] * 1e9) \ - * constants.Na * 1e23 + * constants.Na * 1e23 rotation = LinearRotor(inertia=(inertia[0], "amu*angstrom^2"), symmetry=symmetry) modes.append(rotation) @@ -273,14 +274,17 @@ def load_energy(self, zpe_scale_factor=1.): if 'SCF Done:' in line: e_elect = float(line.split()[4]) * constants.E_h * constants.Na elect_energy_source = 'SCF' + elif ' E2(' in line: + e_elect = float(line.split()[-1].replace('D', 'E')) * constants.E_h * constants.Na + elect_energy_source = 'doublehybrd or MP2' elif 'MP2 =' in line: - e_elect = float(line.split()[-1].replace('D','E')) * constants.E_h * constants.Na + e_elect = float(line.split()[-1].replace('D', 'E')) * constants.E_h * constants.Na elect_energy_source = 'MP2' elif 'E(CORR)=' in line: e_elect = float(line.split()[3]) * constants.E_h * constants.Na elect_energy_source = 'CCSD' - elif 'CCSD(T)=' in line: - e_elect = float(line.split()[1].replace('D','E')) * constants.E_h * constants.Na + elif 'CCSD(T)= ' in line: + e_elect = float(line.split()[1].replace('D', 'E')) * constants.E_h * constants.Na elect_energy_source = 'CCSD(T)' elif 'CBS-QB3 (0 K)' in line: e0_composite = float(line.split()[3]) * constants.E_h * constants.Na From 6b8b99f48c2e67843ba3f3977aca33c8c4786a8b Mon Sep 17 00:00:00 2001 From: Duminda Date: Thu, 7 Nov 2019 17:13:21 -0500 Subject: [PATCH 3/4] add unit test for MP2, double hybrid, CCSD, and CCSD(T) energy parser --- arkane/data/B2PLYP.LOG | 453 ++++++++++++++++++++++++++++++++++ arkane/data/UCCSDT_C_ATOM.LOG | 364 +++++++++++++++++++++++++++ arkane/data/UCCSD_C_ATOM.LOG | 359 +++++++++++++++++++++++++++ arkane/data/UMP2_C_ATOM.LOG | 274 ++++++++++++++++++++ arkane/gaussianTest.py | 19 ++ 5 files changed, 1469 insertions(+) create mode 100755 arkane/data/B2PLYP.LOG create mode 100755 arkane/data/UCCSDT_C_ATOM.LOG create mode 100755 arkane/data/UCCSD_C_ATOM.LOG create mode 100755 arkane/data/UMP2_C_ATOM.LOG diff --git a/arkane/data/B2PLYP.LOG b/arkane/data/B2PLYP.LOG new file mode 100755 index 0000000000..22ba50e9e5 --- /dev/null +++ b/arkane/data/B2PLYP.LOG @@ -0,0 +1,453 @@ + Entering Link 1 = C:\G09W\l1.exe PID= 20588. + + Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, + Gaussian, Inc. All Rights Reserved. + + This is part of the Gaussian(R) 09 program. It is based on + the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), + the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), + the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), + the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), + the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), + the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), + the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon + University), and the Gaussian 82(TM) system (copyright 1983, + Carnegie Mellon University). Gaussian is a federally registered + trademark of Gaussian, Inc. + + This software contains proprietary and confidential information, + including trade secrets, belonging to Gaussian, Inc. + + This software is provided under written license and may be + used, copied, transmitted, or stored only in accord with that + written license. + + The following legend is applicable only to US Government + contracts under FAR: + + RESTRICTED RIGHTS LEGEND + + Use, reproduction and disclosure by the US Government is + subject to restrictions as set forth in subparagraphs (a) + and (c) of the Commercial Computer Software - Restricted + Rights clause in FAR 52.227-19. + + Gaussian, Inc. + 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 + + + --------------------------------------------------------------- + Warning -- This program may not be used in any manner that + competes with the business of Gaussian, Inc. or will provide + assistance to any competitor of Gaussian, Inc. The licensee + of this program is prohibited from giving any competitor of + Gaussian, Inc. access to this program. By using this program, + the user acknowledges that Gaussian, Inc. is engaged in the + business of creating and licensing software in the field of + computational chemistry and represents and warrants to the + licensee that it is not a competitor of Gaussian, Inc. and that + it will not use this program in any manner prohibited above. + --------------------------------------------------------------- + + + Cite this work as: + Gaussian 09, Revision D.01, + M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, + M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, + G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, + A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, + M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, + Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., + J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, + K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, + K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, + M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, + V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, + O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, + R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, + P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, + O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, + and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. + + ****************************************** + Gaussian 09: IA32W-G09RevD.01 24-Apr-2013 + 07-Nov-2019 + ****************************************** + %chk=C:\Users\drana\Desktop\work\Scratch\G09\MarkG\Energy\G09\b3plyp.chk + --------------------------------- + #p b2plyp/3-21g geom=connectivity + --------------------------------- + 1/38=1,57=2/1; + 2/12=2,17=6,18=5,40=1/2; + 3/5=5,11=9,16=1,25=1,30=1,74=-47/1,2,3; + 4//1; + 5/5=2,38=5/2; + 8/10=1/1; + 9/16=-3/6; + 6/7=2,8=2,9=2,10=2/1; + 99/5=1,9=1/99; + Leave Link 1 at Thu Nov 07 11:12:24 2019, MaxMem= 0 cpu: 0.0 + (Enter C:\G09W\l101.exe) + ------------------- + Title Card Required + ------------------- + Symbolic Z-matrix: + Charge = 0 Multiplicity = 1 + C 1.29707 0.70607 0. + H 1.65373 -0.30274 0. + H 1.65374 1.21047 0.87365 + H 1.65374 1.21047 -0.87365 + H 0.22707 0.70608 0. + + NAtoms= 5 NQM= 5 NQMF= 0 NMMI= 0 NMMIF= 0 + NMic= 0 NMicF= 0. + Isotopes and Nuclear Properties: + (Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM) + in nuclear magnetons) + + Atom 1 2 3 4 5 + IAtWgt= 12 1 1 1 1 + AtmWgt= 12.0000000 1.0078250 1.0078250 1.0078250 1.0078250 + NucSpn= 0 1 1 1 1 + AtZEff= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 + NQMom= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 + NMagM= 0.0000000 2.7928460 2.7928460 2.7928460 2.7928460 + AtZNuc= 6.0000000 1.0000000 1.0000000 1.0000000 1.0000000 + Leave Link 101 at Thu Nov 07 11:12:24 2019, MaxMem= 33554432 cpu: 0.0 + (Enter C:\G09W\l202.exe) + Input orientation: + --------------------------------------------------------------------- + Center Atomic Atomic Coordinates (Angstroms) + Number Number Type X Y Z + --------------------------------------------------------------------- + 1 6 0 1.297071 0.706067 0.000000 + 2 1 0 1.653726 -0.302743 0.000000 + 3 1 0 1.653744 1.210465 0.873652 + 4 1 0 1.653744 1.210465 -0.873652 + 5 1 0 0.227071 0.706080 0.000000 + --------------------------------------------------------------------- + Distance matrix (angstroms): + 1 2 3 4 5 + 1 C 0.000000 + 2 H 1.070000 0.000000 + 3 H 1.070000 1.747302 0.000000 + 4 H 1.070000 1.747302 1.747303 0.000000 + 5 H 1.070000 1.747303 1.747303 1.747303 0.000000 + Stoichiometry CH4 + Framework group T[O(C),4C3(H)] + Deg. of freedom 1 + Full point group T NOp 12 + Largest Abelian subgroup D2 NOp 4 + Largest concise Abelian subgroup D2 NOp 4 + Standard orientation: + --------------------------------------------------------------------- + Center Atomic Atomic Coordinates (Angstroms) + Number Number Type X Y Z + --------------------------------------------------------------------- + 1 6 0 0.000000 0.000000 0.000000 + 2 1 0 0.617765 0.617765 0.617765 + 3 1 0 -0.617765 -0.617765 0.617765 + 4 1 0 -0.617765 0.617765 -0.617765 + 5 1 0 0.617765 -0.617765 -0.617765 + --------------------------------------------------------------------- + Rotational constants (GHZ): 164.2463759 164.2463759 164.2463759 + Leave Link 202 at Thu Nov 07 11:12:24 2019, MaxMem= 33554432 cpu: 0.0 + (Enter C:\G09W\l301.exe) + Standard basis: 3-21G (6D, 7F) + Ernie: Thresh= 0.10000D-02 Tol= 0.10000D-05 Strict=F. + There are 5 symmetry adapted cartesian basis functions of A symmetry. + There are 4 symmetry adapted cartesian basis functions of B1 symmetry. + There are 4 symmetry adapted cartesian basis functions of B2 symmetry. + There are 4 symmetry adapted cartesian basis functions of B3 symmetry. + There are 5 symmetry adapted basis functions of A symmetry. + There are 4 symmetry adapted basis functions of B1 symmetry. + There are 4 symmetry adapted basis functions of B2 symmetry. + There are 4 symmetry adapted basis functions of B3 symmetry. + 17 basis functions, 27 primitive gaussians, 17 cartesian basis functions + 5 alpha electrons 5 beta electrons + nuclear repulsion energy 13.6865184431 Hartrees. + IExCor= 419 DFT=T Ex+Corr=B2PLYP ExCW=0 ScaHFX= 0.530000 + ScaDFX= 0.470000 0.470000 0.730000 0.730000 ScalE2= 0.270000 0.270000 + IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 IEmpDi= 4 + NAtoms= 5 NActive= 5 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F + Integral buffers will be 262144 words long. + Regular integral format. + Two-electron integral symmetry is turned on. + Leave Link 301 at Thu Nov 07 11:12:24 2019, MaxMem= 33554432 cpu: 0.0 + (Enter C:\G09W\l302.exe) + NPDir=0 NMtPBC= 1 NCelOv= 1 NCel= 1 NClECP= 1 NCelD= 1 + NCelK= 1 NCelE2= 1 NClLst= 1 CellRange= 0.0. + One-electron integrals computed using PRISM. + One-electron integral symmetry used in STVInt + NBasis= 17 RedAO= T EigKep= 4.03D-02 NBF= 5 4 4 4 + NBsUse= 17 1.00D-06 EigRej= -1.00D+00 NBFU= 5 4 4 4 + Precomputing XC quadrature grid using + IXCGrd= 4 IRadAn= 0 IRanWt= -1 IRanGd= 0 AccXCQ= 0.00D+00. + Generated NRdTot= 0 NPtTot= 0 NUsed= 0 NTot= 16 + NSgBfM= 17 17 17 17 17 MxSgAt= 5 MxSgA2= 5. + Leave Link 302 at Thu Nov 07 11:12:24 2019, MaxMem= 33554432 cpu: 0.0 + (Enter C:\G09W\l303.exe) + DipDrv: MaxL=1. + Leave Link 303 at Thu Nov 07 11:12:24 2019, MaxMem= 33554432 cpu: 0.0 + (Enter C:\G09W\l401.exe) + ExpMin= 1.83D-01 ExpMax= 1.72D+02 ExpMxC= 1.72D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 + Harris functional with IExCor= 419 and IRadAn= 1 diagonalized for initial guess. + HarFok: IExCor= 419 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 + ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 + FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 + NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T + wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 + NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 + Petite list used in FoFCou. + Harris En= -40.3389689758633 + JPrj=0 DoOrth=F DoCkMO=F. + Initial guess orbital symmetries: + Occupied (A) (A) (T) (T) (T) + Virtual (A) (T) (T) (T) (T) (T) (T) (A) (T) (T) (T) (A) + The electronic state of the initial guess is 1-A. + Leave Link 401 at Thu Nov 07 11:12:24 2019, MaxMem= 33554432 cpu: 0.0 + (Enter C:\G09W\l502.exe) + Closed shell SCF: + Using DIIS extrapolation, IDIIS= 1040. + Integral symmetry usage will be decided dynamically. + Keep R1 ints in memory in symmetry-blocked form, NReq=887875. + IVT= 20113 IEndB= 20113 NGot= 33554432 MDV= 33530844 + LenX= 33530844 LenY= 33529962 + Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. + Requested convergence on MAX density matrix=1.00D-06. + Requested convergence on energy=1.00D-06. + No special actions if energy rises. + FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0 + NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T + wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0 + NMat0= 1 NMatS0= 153 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 + Petite list used in FoFCou. + Integral accuracy reduced to 1.0D-05 until final iterations. + + Cycle 1 Pass 0 IDiag 1: + E= -40.0981649461019 + DIIS: error= 7.33D-02 at cycle 1 NSaved= 1. + NSaved= 1 IEnMin= 1 EnMin= -40.0981649461019 IErMin= 1 ErrMin= 7.33D-02 + ErrMax= 7.33D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 8.51D-02 BMatP= 8.51D-02 + IDIUse=3 WtCom= 2.67D-01 WtEn= 7.33D-01 + Coeff-Com: 0.100D+01 + Coeff-En: 0.100D+01 + Coeff: 0.100D+01 + Gap= 0.604 Goal= None Shift= 0.000 + GapD= 0.604 DampG=2.000 DampE=0.500 DampFc=1.0000 IDamp=-1. + RMSDP=2.40D-02 MaxDP=1.34D-01 OVMax= 1.46D-01 + + Cycle 2 Pass 0 IDiag 1: + E= -40.1434815728746 Delta-E= -0.045316626773 Rises=F Damp=F + DIIS: error= 4.84D-02 at cycle 2 NSaved= 2. + NSaved= 2 IEnMin= 2 EnMin= -40.1434815728746 IErMin= 2 ErrMin= 4.84D-02 + ErrMax= 4.84D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 4.17D-02 BMatP= 8.51D-02 + IDIUse=3 WtCom= 5.16D-01 WtEn= 4.84D-01 + Coeff-Com: 0.410D+00 0.590D+00 + Coeff-En: 0.278D+00 0.722D+00 + Coeff: 0.346D+00 0.654D+00 + Gap= 0.673 Goal= None Shift= 0.000 + RMSDP=1.04D-02 MaxDP=5.76D-02 DE=-4.53D-02 OVMax= 5.96D-02 + + Cycle 3 Pass 0 IDiag 1: + E= -40.1850864359784 Delta-E= -0.041604863104 Rises=F Damp=F + DIIS: error= 5.97D-03 at cycle 3 NSaved= 3. + NSaved= 3 IEnMin= 3 EnMin= -40.1850864359784 IErMin= 3 ErrMin= 5.97D-03 + ErrMax= 5.97D-03 0.00D+00 EMaxC= 1.00D-01 BMatC= 5.70D-04 BMatP= 4.17D-02 + IDIUse=3 WtCom= 9.40D-01 WtEn= 5.97D-02 + Coeff-Com: -0.217D-01 0.800D-01 0.942D+00 + Coeff-En: 0.000D+00 0.000D+00 0.100D+01 + Coeff: -0.204D-01 0.752D-01 0.945D+00 + Gap= 0.670 Goal= None Shift= 0.000 + RMSDP=1.05D-03 MaxDP=5.14D-03 DE=-4.16D-02 OVMax= 6.79D-03 + + Cycle 4 Pass 0 IDiag 1: + E= -40.1856477513352 Delta-E= -0.000561315357 Rises=F Damp=F + DIIS: error= 2.25D-04 at cycle 4 NSaved= 4. + NSaved= 4 IEnMin= 4 EnMin= -40.1856477513352 IErMin= 4 ErrMin= 2.25D-04 + ErrMax= 2.25D-04 0.00D+00 EMaxC= 1.00D-01 BMatC= 7.36D-07 BMatP= 5.70D-04 + IDIUse=3 WtCom= 9.98D-01 WtEn= 2.25D-03 + Coeff-Com: 0.110D-02-0.122D-01-0.794D-01 0.109D+01 + Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.100D+01 + Coeff: 0.110D-02-0.122D-01-0.792D-01 0.109D+01 + Gap= 0.671 Goal= None Shift= 0.000 + RMSDP=5.28D-05 MaxDP=4.28D-04 DE=-5.61D-04 OVMax= 2.69D-04 + + Cycle 5 Pass 0 IDiag 1: + E= -40.1856485017618 Delta-E= -0.000000750427 Rises=F Damp=F + DIIS: error= 7.43D-06 at cycle 5 NSaved= 5. + NSaved= 5 IEnMin= 5 EnMin= -40.1856485017618 IErMin= 5 ErrMin= 7.43D-06 + ErrMax= 7.43D-06 0.00D+00 EMaxC= 1.00D-01 BMatC= 3.93D-10 BMatP= 7.36D-07 + IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 + Coeff-Com: 0.651D-04-0.118D-04-0.184D-02-0.487D-01 0.105D+01 + Coeff: 0.651D-04-0.118D-04-0.184D-02-0.487D-01 0.105D+01 + Gap= 0.671 Goal= None Shift= 0.000 + RMSDP=2.38D-06 MaxDP=2.80D-05 DE=-7.50D-07 OVMax= 1.27D-05 + + Initial convergence to 1.0D-05 achieved. Increase integral accuracy. + Cycle 6 Pass 1 IDiag 1: + E= -40.1856263419652 Delta-E= 0.000022159797 Rises=F Damp=F + DIIS: error= 5.73D-06 at cycle 1 NSaved= 1. + NSaved= 1 IEnMin= 1 EnMin= -40.1856263419652 IErMin= 1 ErrMin= 5.73D-06 + ErrMax= 5.73D-06 0.00D+00 EMaxC= 1.00D-01 BMatC= 7.33D-10 BMatP= 7.33D-10 + IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 + Coeff-Com: 0.100D+01 + Coeff: 0.100D+01 + Gap= 0.671 Goal= None Shift= 0.000 + RMSDP=2.38D-06 MaxDP=2.80D-05 DE= 2.22D-05 OVMax= 1.43D-05 + + Cycle 7 Pass 1 IDiag 1: + E= -40.1856263434286 Delta-E= -0.000000001463 Rises=F Damp=F + DIIS: error= 8.41D-07 at cycle 2 NSaved= 2. + NSaved= 2 IEnMin= 2 EnMin= -40.1856263434286 IErMin= 2 ErrMin= 8.41D-07 + ErrMax= 8.41D-07 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.32D-11 BMatP= 7.33D-10 + IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 + Coeff-Com: -0.166D+00 0.117D+01 + Coeff: -0.166D+00 0.117D+01 + Gap= 0.671 Goal= None Shift= 0.000 + RMSDP=7.30D-07 MaxDP=3.31D-06 DE=-1.46D-09 OVMax= 2.51D-06 + + Cycle 8 Pass 1 IDiag 1: + E= -40.1856263434675 Delta-E= -0.000000000039 Rises=F Damp=F + DIIS: error= 3.89D-07 at cycle 3 NSaved= 3. + NSaved= 3 IEnMin= 3 EnMin= -40.1856263434675 IErMin= 3 ErrMin= 3.89D-07 + ErrMax= 3.89D-07 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.47D-12 BMatP= 2.32D-11 + IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 + Coeff-Com: -0.527D-01 0.385D+00 0.667D+00 + Coeff: -0.527D-01 0.385D+00 0.667D+00 + Gap= 0.671 Goal= None Shift= 0.000 + RMSDP=8.27D-08 MaxDP=3.67D-07 DE=-3.89D-11 OVMax= 5.24D-07 + + Cycle 9 Pass 1 IDiag 1: + E= -40.1856263434697 Delta-E= -0.000000000002 Rises=F Damp=F + DIIS: error= 7.84D-08 at cycle 4 NSaved= 4. + NSaved= 4 IEnMin= 4 EnMin= -40.1856263434697 IErMin= 4 ErrMin= 7.84D-08 + ErrMax= 7.84D-08 0.00D+00 EMaxC= 1.00D-01 BMatC= 8.09D-14 BMatP= 2.47D-12 + IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 + Coeff-Com: 0.630D-02-0.570D-01 0.860D-01 0.965D+00 + Coeff: 0.630D-02-0.570D-01 0.860D-01 0.965D+00 + Gap= 0.671 Goal= None Shift= 0.000 + RMSDP=1.79D-08 MaxDP=1.53D-07 DE=-2.22D-12 OVMax= 9.13D-08 + + Cycle 10 Pass 1 IDiag 1: + E= -40.1856263434700 Delta-E= 0.000000000000 Rises=F Damp=F + DIIS: error= 2.74D-09 at cycle 5 NSaved= 5. + NSaved= 5 IEnMin= 5 EnMin= -40.1856263434700 IErMin= 5 ErrMin= 2.74D-09 + ErrMax= 2.74D-09 0.00D+00 EMaxC= 1.00D-01 BMatC= 4.76D-17 BMatP= 8.09D-14 + IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 + Coeff-Com: -0.864D-03 0.808D-02-0.149D-01-0.160D+00 0.117D+01 + Coeff: -0.864D-03 0.808D-02-0.149D-01-0.160D+00 0.117D+01 + Gap= 0.671 Goal= None Shift= 0.000 + RMSDP=1.07D-09 MaxDP=1.34D-08 DE=-2.70D-13 OVMax= 6.04D-09 + + SCF Done: E(RB2PLYP) = -40.1856263435 A.U. after 10 cycles + NFock= 10 Conv=0.11D-08 -V/T= 2.0048 + KE= 3.999316782235D+01 PE=-1.199505132181D+02 EE= 2.608520060914D+01 + Leave Link 502 at Thu Nov 07 11:12:24 2019, MaxMem= 33554432 cpu: 0.0 + (Enter C:\G09W\l801.exe) + DoSCS=T DFT=T ScalE2(SS,OS)= 0.270000 0.270000 + ExpMin= 1.83D-01 ExpMax= 1.72D+02 ExpMxC= 1.72D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 + HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 + ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 + Largest valence mixing into a core orbital is 2.13D-04 + Largest core mixing into a valence orbital is 1.70D-05 + Range of M.O.s used for correlation: 2 17 + NBasis= 17 NAE= 5 NBE= 5 NFC= 1 NFV= 0 + NROrb= 16 NOA= 4 NOB= 4 NVA= 12 NVB= 12 + Leave Link 801 at Thu Nov 07 11:12:25 2019, MaxMem= 33554432 cpu: 0.0 + (Enter C:\G09W\l906.exe) + DoSCS=T DFT=T ScalE2(SS,OS)= 0.270000 0.270000 + FulOut=F Deriv=F AODrv=F NAtomX= 5 + MMem= 13705 MDisk= 4 MDiskD= 4 + W3Min= 816 MinDsk= 53041 NBas6D= 17 + NBas2D= 165 NTT= 153 LW2= 2000000 + MDV= 33549921 MDiskM= 19332 NBas2p= 87 + Fully in-core method, ICMem= 6034076. + IMap= 1 2 3 4 + JobTyp=1 Pass 1 fully in-core, NPsUse= 1. + Compute canonical integrals. + FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0 + NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T + wScrn= 0.000000 ICntrl= 600 IOpCl= 1 I1Cent= 0 NGrid= 0 + NMat0= 1 NMatS0= 165 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 + Symmetry not used in FoFCou. + Spin components of T(2) and E(2): + alpha-alpha T2 = 0.4192926533D-02 E2= -0.2630109372D-02 + alpha-beta T2 = 0.4324389502D-01 E2= -0.2690800998D-01 + beta-beta T2 = 0.4192926533D-02 E2= -0.2630109372D-02 + The integrals were generated 1 times. + E2(B2PLYP) = -0.3216822872D-01 E(B2PLYP) = -0.40217794572194D+02 + Leave Link 906 at Thu Nov 07 11:12:25 2019, MaxMem= 33554432 cpu: 0.0 + (Enter C:\G09W\l601.exe) + Copying SCF densities to generalized density rwf, IOpCl= 0 IROHF=0. + + ********************************************************************** + + Population analysis using the SCF density. + + ********************************************************************** + + Orbital symmetries: + Occupied (A) (A) (T) (T) (T) + Virtual (A) (T) (T) (T) (T) (T) (T) (A) (T) (T) (T) (A) + The electronic state is 1-A. + Alpha occ. eigenvalues -- -10.52823 -0.80292 -0.45801 -0.45801 -0.45801 + Alpha virt. eigenvalues -- 0.21250 0.26564 0.26564 0.26564 0.78536 + Alpha virt. eigenvalues -- 0.78536 0.78536 1.17819 1.19459 1.19459 + Alpha virt. eigenvalues -- 1.19459 1.81058 + Condensed to atoms (all electrons): + 1 2 3 4 5 + 1 C 5.310020 0.370976 0.370976 0.370976 0.370976 + 2 H 0.370976 0.510088 -0.026515 -0.026515 -0.026515 + 3 H 0.370976 -0.026515 0.510088 -0.026515 -0.026515 + 4 H 0.370976 -0.026515 -0.026515 0.510088 -0.026515 + 5 H 0.370976 -0.026515 -0.026515 -0.026515 0.510088 + Mulliken charges: + 1 + 1 C -0.793922 + 2 H 0.198480 + 3 H 0.198480 + 4 H 0.198480 + 5 H 0.198480 + Sum of Mulliken charges = 0.00000 + Mulliken charges with hydrogens summed into heavy atoms: + 1 + 1 C 0.000000 + Electronic spatial extent (au): = 34.7598 + Charge= 0.0000 electrons + Dipole moment (field-independent basis, Debye): + X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 + Quadrupole moment (field-independent basis, Debye-Ang): + XX= -8.2521 YY= -8.2521 ZZ= -8.2521 + XY= 0.0000 XZ= 0.0000 YZ= 0.0000 + Traceless Quadrupole moment (field-independent basis, Debye-Ang): + XX= 0.0000 YY= 0.0000 ZZ= 0.0000 + XY= 0.0000 XZ= 0.0000 YZ= 0.0000 + Octapole moment (field-independent basis, Debye-Ang**2): + XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 + XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 + YYZ= 0.0000 XYZ= 0.6859 + Hexadecapole moment (field-independent basis, Debye-Ang**3): + XXXX= -14.8440 YYYY= -14.8440 ZZZZ= -14.8440 XXXY= 0.0000 + XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 + ZZZY= 0.0000 XXYY= -4.5291 XXZZ= -4.5291 YYZZ= -4.5291 + XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 + N-N= 1.368651844314D+01 E-N=-1.199505132239D+02 KE= 3.999316782235D+01 + Symmetry A KE= 3.420467566746D+01 + Symmetry B1 KE= 1.929497384965D+00 + Symmetry B2 KE= 1.929497384965D+00 + Symmetry B3 KE= 1.929497384965D+00 + Leave Link 601 at Thu Nov 07 11:12:25 2019, MaxMem= 33554432 cpu: 0.0 + (Enter C:\G09W\l9999.exe) + 1|1|UNPC-DUMINDA-T480S|SP|RB2PLYP-FC|3-21G|C1H4|DRANA|07-Nov-2019|0||# + p b2plyp/3-21g geom=connectivity||Title Card Required||0,1|C,0,1.29707 + 111,0.70606695,0.|H,0,1.65372554,-0.30274306,0.|H,0,1.65374395,1.21046 + 514,0.8736515|H,0,1.65374395,1.21046514,-0.8736515|H,0,0.22707111,0.70 + 608013,0.||Version=IA32W-G09RevD.01|State=1-A|HF=-40.1856263|MP2=-40.2 + 177946|RMSD=1.070e-009|PG=T [O(C1),4C3(H1)]||@ + + + TRUST EVERYONE, BUT CUT THE CARDS. + Job cpu time: 0 days 0 hours 0 minutes 1.0 seconds. + File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 + Normal termination of Gaussian 09 at Thu Nov 07 11:12:25 2019. diff --git a/arkane/data/UCCSDT_C_ATOM.LOG b/arkane/data/UCCSDT_C_ATOM.LOG new file mode 100755 index 0000000000..305c6e4378 --- /dev/null +++ b/arkane/data/UCCSDT_C_ATOM.LOG @@ -0,0 +1,364 @@ + Entering Link 1 = C:\G09W\l1.exe PID= 1288. + + Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, + Gaussian, Inc. All Rights Reserved. + + This is part of the Gaussian(R) 09 program. It is based on + the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), + the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), + the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), + the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), + the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), + the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), + the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon + University), and the Gaussian 82(TM) system (copyright 1983, + Carnegie Mellon University). Gaussian is a federally registered + trademark of Gaussian, Inc. + + This software contains proprietary and confidential information, + including trade secrets, belonging to Gaussian, Inc. + + This software is provided under written license and may be + used, copied, transmitted, or stored only in accord with that + written license. + + The following legend is applicable only to US Government + contracts under FAR: + + RESTRICTED RIGHTS LEGEND + + Use, reproduction and disclosure by the US Government is + subject to restrictions as set forth in subparagraphs (a) + and (c) of the Commercial Computer Software - Restricted + Rights clause in FAR 52.227-19. + + Gaussian, Inc. + 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 + + + --------------------------------------------------------------- + Warning -- This program may not be used in any manner that + competes with the business of Gaussian, Inc. or will provide + assistance to any competitor of Gaussian, Inc. The licensee + of this program is prohibited from giving any competitor of + Gaussian, Inc. access to this program. By using this program, + the user acknowledges that Gaussian, Inc. is engaged in the + business of creating and licensing software in the field of + computational chemistry and represents and warrants to the + licensee that it is not a competitor of Gaussian, Inc. and that + it will not use this program in any manner prohibited above. + --------------------------------------------------------------- + + + Cite this work as: + Gaussian 09, Revision D.01, + M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, + M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, + G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, + A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, + M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, + Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., + J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, + K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, + K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, + M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, + V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, + O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, + R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, + P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, + O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, + and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. + + ****************************************** + Gaussian 09: IA32W-G09RevD.01 24-Apr-2013 + 07-Nov-2019 + ****************************************** + %chk=C:\Users\drana\Desktop\work\Scratch\G09\MarkG\Energy\G09\uccsdt_C_atom.chk + ---------------------------------- + # uccsd(t)/3-21g geom=connectivity + ---------------------------------- + 1/38=1,57=2/1; + 2/12=2,17=6,18=5,40=1/2; + 3/5=5,11=2,16=1,25=1,30=1,116=2/1,2,3; + 4//1; + 5/5=2,38=5/2; + 8/6=4,9=120000,10=1/1,4; + 9/5=7,14=2/13; + 6/7=2,8=2,9=2,10=2/1; + 99/5=1,9=1/99; + ------------------- + Title Card Required + ------------------- + Symbolic Z-matrix: + Charge = 0 Multiplicity = 3 + C 1.0251 0.95711 0. + + Input orientation: + --------------------------------------------------------------------- + Center Atomic Atomic Coordinates (Angstroms) + Number Number Type X Y Z + --------------------------------------------------------------------- + 1 6 0 1.025105 0.957113 0.000000 + --------------------------------------------------------------------- + Stoichiometry C(3) + Framework group OH[O(C)] + Deg. of freedom 0 + Full point group OH NOp 48 + Largest Abelian subgroup D2H NOp 8 + Largest concise Abelian subgroup C1 NOp 1 + Standard orientation: + --------------------------------------------------------------------- + Center Atomic Atomic Coordinates (Angstroms) + Number Number Type X Y Z + --------------------------------------------------------------------- + 1 6 0 0.000000 0.000000 0.000000 + --------------------------------------------------------------------- + Standard basis: 3-21G (6D, 7F) + There are 3 symmetry adapted cartesian basis functions of AG symmetry. + There are 0 symmetry adapted cartesian basis functions of B1G symmetry. + There are 0 symmetry adapted cartesian basis functions of B2G symmetry. + There are 0 symmetry adapted cartesian basis functions of B3G symmetry. + There are 0 symmetry adapted cartesian basis functions of AU symmetry. + There are 2 symmetry adapted cartesian basis functions of B1U symmetry. + There are 2 symmetry adapted cartesian basis functions of B2U symmetry. + There are 2 symmetry adapted cartesian basis functions of B3U symmetry. + There are 3 symmetry adapted basis functions of AG symmetry. + There are 0 symmetry adapted basis functions of B1G symmetry. + There are 0 symmetry adapted basis functions of B2G symmetry. + There are 0 symmetry adapted basis functions of B3G symmetry. + There are 0 symmetry adapted basis functions of AU symmetry. + There are 2 symmetry adapted basis functions of B1U symmetry. + There are 2 symmetry adapted basis functions of B2U symmetry. + There are 2 symmetry adapted basis functions of B3U symmetry. + 9 basis functions, 15 primitive gaussians, 9 cartesian basis functions + 4 alpha electrons 2 beta electrons + nuclear repulsion energy 0.0000000000 Hartrees. + NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F + Integral buffers will be 262144 words long. + Raffenetti 2 integral format. + Two-electron integral symmetry is turned on. + One-electron integrals computed using PRISM. + NBasis= 9 RedAO= T EigKep= 6.75D-01 NBF= 3 0 0 0 0 2 2 2 + NBsUse= 9 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 0 0 0 2 2 2 + ExpMin= 1.96D-01 ExpMax= 1.72D+02 ExpMxC= 1.72D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 + Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. + HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 + ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 + FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 + NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T + wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 + NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 + Petite list used in FoFCou. + Initial guess orbital symmetries: + Alpha Orbitals: + Occupied (A1G) (A1G) (T1U) (T1U) + Virtual (T1U) (T1U) (T1U) (T1U) (A1G) + Beta Orbitals: + Occupied (A1G) (A1G) + Virtual (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (A1G) + Initial guess = 0.0000 = 0.0000 = 1.0000 = 2.0000 S= 1.0000 + Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=822740. + Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. + Requested convergence on MAX density matrix=1.00D-06. + Requested convergence on energy=1.00D-06. + No special actions if energy rises. + Density matrix breaks symmetry, PCut= 1.00D-04 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + SCF Done: E(UHF) = -37.4810698326 A.U. after 6 cycles + NFock= 6 Conv=0.55D-08 -V/T= 2.0033 + = 0.0000 = 0.0000 = 1.0000 = 2.0010 S= 1.0003 + = 0.000000000000E+00 + Annihilation of the first spin contaminant: + S**2 before annihilation 2.0010, after 2.0000 + ExpMin= 1.96D-01 ExpMax= 1.72D+02 ExpMxC= 1.72D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 + HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 + ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 + Range of M.O.s used for correlation: 2 9 + NBasis= 9 NAE= 4 NBE= 2 NFC= 1 NFV= 0 + NROrb= 8 NOA= 3 NOB= 1 NVA= 5 NVB= 7 + Semi-Direct transformation. + ModeAB= 2 MOrb= 3 LenV= 33458373 + LASXX= 66 LTotXX= 66 LenRXX= 66 + LTotAB= 132 MaxLAS= 1080 LenRXY= 1080 + NonZer= 1368 LenScr= 1048064 LnRSAI= 0 + LnScr1= 0 LExtra= 0 Total= 1049210 + MaxDsk= -1 SrtSym= F ITran= 4 + JobTyp=1 Pass 1: I= 1 to 3. + (rs|ai) integrals will be sorted in core. + ModeAB= 2 MOrb= 1 LenV= 33458373 + LASXX= 28 LTotXX= 28 LenRXX= 360 + LTotAB= 20 MaxLAS= 360 LenRXY= 20 + NonZer= 456 LenScr= 1048064 LnRSAI= 0 + LnScr1= 0 LExtra= 0 Total= 1048444 + MaxDsk= -1 SrtSym= F ITran= 4 + JobTyp=2 Pass 1: I= 1 to 1. + (rs|ai) integrals will be sorted in core. + Spin components of T(2) and E(2): + alpha-alpha T2 = 0.1539858699D-02 E2= -0.4542240933D-02 + alpha-beta T2 = 0.8342095977D-02 E2= -0.1907164950D-01 + beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00 + ANorm= 0.1004928831D+01 + E2 = -0.2361389043D-01 EUMP2 = -0.37504683723025D+02 + (S**2,0)= 0.20010D+01 (S**2,1)= 0.20001D+01 + E(PUHF)= -0.37481383594D+02 E(PMP2)= -0.37504849457D+02 + Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=802872. + Iterations= 50 Convergence= 0.100D-06 + Iteration Nr. 1 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + E(PMP3)= -0.37512313510D+02 + MP4(R+Q)= 0.19195405D-03 + E3= -0.75521070D-02 EUMP3= -0.37512235830D+02 + E4(DQ)= -0.27959200D-02 UMP4(DQ)= -0.37515031750D+02 + E4(SDQ)= -0.28114103D-02 UMP4(SDQ)= -0.37515047240D+02 + DE(Corr)= -0.30974220E-01 E(Corr)= -37.512044053 + NORM(A)= 0.10116679D+01 + Iteration Nr. 2 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.34987698E-01 E(CORR)= -37.516057530 Delta=-4.01D-03 + NORM(A)= 0.10140179D+01 + Iteration Nr. 3 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.36028974E-01 E(CORR)= -37.517098807 Delta=-1.04D-03 + NORM(A)= 0.10142146D+01 + Iteration Nr. 4 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.36098709E-01 E(CORR)= -37.517168542 Delta=-6.97D-05 + NORM(A)= 0.10141609D+01 + Iteration Nr. 5 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.36075425E-01 E(CORR)= -37.517145257 Delta= 2.33D-05 + NORM(A)= 0.10141784D+01 + Iteration Nr. 6 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.36082625E-01 E(CORR)= -37.517152457 Delta=-7.20D-06 + NORM(A)= 0.10141757D+01 + Iteration Nr. 7 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.36081518E-01 E(CORR)= -37.517151351 Delta= 1.11D-06 + NORM(A)= 0.10141759D+01 + Iteration Nr. 8 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.36081594E-01 E(CORR)= -37.517151426 Delta=-7.52D-08 + NORM(A)= 0.10141759D+01 + Dominant configurations: + *********************** + Spin Case I J A B Value + ABAB 2 2 5 3 -0.136608D+00 + Largest amplitude= 1.37D-01 + Time for triples= 0.00 seconds. + T4(CCSD)= -0.30136292D-03 + T5(CCSD)= -0.16795075D-05 + CCSD(T)= -0.37517454469D+02 + + S**2, projected HF & approx projected MPn energies after annihilation of + unwanted spin states (see manual for definitions): + + spins (S**2,0) (S**2,1) PUHF PMP2 PMP3 PMP4 + annihilated + s+1 2.00000 2.00000 -37.481384 -37.504849 -37.512314 + + Discarding MO integrals. + + ********************************************************************** + + Population analysis using the SCF density. + + ********************************************************************** + + Orbital symmetries: + Alpha Orbitals: + Occupied (A1G) (A1G) (?A) (?A) + Virtual (?A) (?A) (?A) (?A) (A1G) + Beta Orbitals: + Occupied (A1G) (A1G) + Virtual (?A) (?A) (?A) (?A) (?A) (?A) (A1G) + Unable to determine electronic state: an orbital has unidentified symmetry. + Alpha occ. eigenvalues -- -11.27250 -0.81446 -0.42596 -0.42596 + Alpha virt. eigenvalues -- 0.05294 0.89798 0.89798 0.97612 1.24659 + Beta occ. eigenvalues -- -11.23139 -0.57527 + Beta virt. eigenvalues -- 0.10809 0.16273 0.16273 1.01164 1.06359 + Beta virt. eigenvalues -- 1.06359 1.33242 + Condensed to atoms (all electrons): + 1 + 1 C 6.000000 + Atomic-Atomic Spin Densities. + 1 + 1 C 2.000000 + Mulliken charges and spin densities: + 1 2 + 1 C 0.000000 2.000000 + Sum of Mulliken charges = 0.00000 2.00000 + Mulliken charges and spin densities with hydrogens summed into heavy atoms: + 1 2 + 1 C 0.000000 2.000000 + Electronic spatial extent (au): = 13.3032 + Charge= 0.0000 electrons + Dipole moment (field-independent basis, Debye): + X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 + Quadrupole moment (field-independent basis, Debye-Ang): + XX= -4.7201 YY= -6.5866 ZZ= -6.5866 + XY= 0.0000 XZ= 0.0000 YZ= 0.0000 + Traceless Quadrupole moment (field-independent basis, Debye-Ang): + XX= 1.2443 YY= -0.6222 ZZ= -0.6222 + XY= 0.0000 XZ= 0.0000 YZ= 0.0000 + Octapole moment (field-independent basis, Debye-Ang**2): + XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 + XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 + YYZ= 0.0000 XYZ= 0.0000 + Hexadecapole moment (field-independent basis, Debye-Ang**3): + XXXX= -4.1347 YYYY= -7.1820 ZZZZ= -7.1820 XXXY= 0.0000 + XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 + ZZZY= 0.0000 XXYY= -1.8861 XXZZ= -1.8861 YYZZ= -2.3940 + XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 + N-N= 0.000000000000D+00 E-N=-8.757280191249D+01 KE= 3.735620893854D+01 + Symmetry AG KE= 3.487097636732D+01 + Symmetry B1G KE= 0.000000000000D+00 + Symmetry B2G KE= 0.000000000000D+00 + Symmetry B3G KE= 0.000000000000D+00 + Symmetry AU KE= 0.000000000000D+00 + Symmetry B1U KE= 1.242616285610D+00 + Symmetry B2U KE= 1.242616285610D+00 + Symmetry B3U KE= 4.658757089566D-33 + 1|1|UNPC-DUMINDA-T480S|SP|UCCSD(T)-FC|3-21G|C1(3)|DRANA|07-Nov-2019|0| + |# uccsd(t)/3-21g geom=connectivity||Title Card Required||0,3|C,0,1.02 + 510459,0.95711297,0.||Version=IA32W-G09RevD.01|HF=-37.4810698|MP2=-37. + 5046837|MP3=-37.5122358|MP4D=-37.5152237|MP4DQ=-37.5150318|PUHF=-37.48 + 13836|PMP2-0=-37.5048495|PMP3-0=-37.5123135|MP4SDQ=-37.5150472|CCSD=-3 + 7.5171514|CCSD(T)=-37.5174545|S2=2.000971|S2-1=2.000055|S2A=2.|RMSD=5. + 455e-009|PG=OH [O(C1)]||@ + + + TIME IS NATURE'S WAY OF MAKING SURE EVERYTHING + DOESN'T HAPPEN AT ONCE. + - WOODY ALLEN + Job cpu time: 0 days 0 hours 0 minutes 1.0 seconds. + File lengths (MBytes): RWF= 14 Int= 0 D2E= 0 Chk= 1 Scr= 1 + Normal termination of Gaussian 09 at Thu Nov 07 11:18:37 2019. diff --git a/arkane/data/UCCSD_C_ATOM.LOG b/arkane/data/UCCSD_C_ATOM.LOG new file mode 100755 index 0000000000..be58ef2999 --- /dev/null +++ b/arkane/data/UCCSD_C_ATOM.LOG @@ -0,0 +1,359 @@ + Entering Link 1 = C:\G09W\l1.exe PID= 24648. + + Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, + Gaussian, Inc. All Rights Reserved. + + This is part of the Gaussian(R) 09 program. It is based on + the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), + the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), + the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), + the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), + the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), + the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), + the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon + University), and the Gaussian 82(TM) system (copyright 1983, + Carnegie Mellon University). Gaussian is a federally registered + trademark of Gaussian, Inc. + + This software contains proprietary and confidential information, + including trade secrets, belonging to Gaussian, Inc. + + This software is provided under written license and may be + used, copied, transmitted, or stored only in accord with that + written license. + + The following legend is applicable only to US Government + contracts under FAR: + + RESTRICTED RIGHTS LEGEND + + Use, reproduction and disclosure by the US Government is + subject to restrictions as set forth in subparagraphs (a) + and (c) of the Commercial Computer Software - Restricted + Rights clause in FAR 52.227-19. + + Gaussian, Inc. + 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 + + + --------------------------------------------------------------- + Warning -- This program may not be used in any manner that + competes with the business of Gaussian, Inc. or will provide + assistance to any competitor of Gaussian, Inc. The licensee + of this program is prohibited from giving any competitor of + Gaussian, Inc. access to this program. By using this program, + the user acknowledges that Gaussian, Inc. is engaged in the + business of creating and licensing software in the field of + computational chemistry and represents and warrants to the + licensee that it is not a competitor of Gaussian, Inc. and that + it will not use this program in any manner prohibited above. + --------------------------------------------------------------- + + + Cite this work as: + Gaussian 09, Revision D.01, + M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, + M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, + G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, + A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, + M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, + Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., + J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, + K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, + K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, + M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, + V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, + O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, + R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, + P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, + O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, + and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. + + ****************************************** + Gaussian 09: IA32W-G09RevD.01 24-Apr-2013 + 07-Nov-2019 + ****************************************** + %chk=C:\Users\drana\Desktop\work\Scratch\G09\MarkG\Energy\G09\uccsd_C_atom.chk + ------------------------------- + # uccsd/3-21g geom=connectivity + ------------------------------- + 1/38=1,57=2/1; + 2/12=2,17=6,18=5,40=1/2; + 3/5=5,11=2,16=1,25=1,30=1,116=2/1,2,3; + 4//1; + 5/5=2,38=5/2; + 8/6=4,9=120000,10=1/1,4; + 9/5=7/13; + 6/7=2,8=2,9=2,10=2/1; + 99/5=1,9=1/99; + ------------------- + Title Card Required + ------------------- + Symbolic Z-matrix: + Charge = 0 Multiplicity = 3 + C 1.0251 0.95711 0. + + Input orientation: + --------------------------------------------------------------------- + Center Atomic Atomic Coordinates (Angstroms) + Number Number Type X Y Z + --------------------------------------------------------------------- + 1 6 0 1.025105 0.957113 0.000000 + --------------------------------------------------------------------- + Stoichiometry C(3) + Framework group OH[O(C)] + Deg. of freedom 0 + Full point group OH NOp 48 + Largest Abelian subgroup D2H NOp 8 + Largest concise Abelian subgroup C1 NOp 1 + Standard orientation: + --------------------------------------------------------------------- + Center Atomic Atomic Coordinates (Angstroms) + Number Number Type X Y Z + --------------------------------------------------------------------- + 1 6 0 0.000000 0.000000 0.000000 + --------------------------------------------------------------------- + Standard basis: 3-21G (6D, 7F) + There are 3 symmetry adapted cartesian basis functions of AG symmetry. + There are 0 symmetry adapted cartesian basis functions of B1G symmetry. + There are 0 symmetry adapted cartesian basis functions of B2G symmetry. + There are 0 symmetry adapted cartesian basis functions of B3G symmetry. + There are 0 symmetry adapted cartesian basis functions of AU symmetry. + There are 2 symmetry adapted cartesian basis functions of B1U symmetry. + There are 2 symmetry adapted cartesian basis functions of B2U symmetry. + There are 2 symmetry adapted cartesian basis functions of B3U symmetry. + There are 3 symmetry adapted basis functions of AG symmetry. + There are 0 symmetry adapted basis functions of B1G symmetry. + There are 0 symmetry adapted basis functions of B2G symmetry. + There are 0 symmetry adapted basis functions of B3G symmetry. + There are 0 symmetry adapted basis functions of AU symmetry. + There are 2 symmetry adapted basis functions of B1U symmetry. + There are 2 symmetry adapted basis functions of B2U symmetry. + There are 2 symmetry adapted basis functions of B3U symmetry. + 9 basis functions, 15 primitive gaussians, 9 cartesian basis functions + 4 alpha electrons 2 beta electrons + nuclear repulsion energy 0.0000000000 Hartrees. + NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F + Integral buffers will be 262144 words long. + Raffenetti 2 integral format. + Two-electron integral symmetry is turned on. + One-electron integrals computed using PRISM. + NBasis= 9 RedAO= T EigKep= 6.75D-01 NBF= 3 0 0 0 0 2 2 2 + NBsUse= 9 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 0 0 0 2 2 2 + ExpMin= 1.96D-01 ExpMax= 1.72D+02 ExpMxC= 1.72D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 + Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. + HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 + ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 + FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 + NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T + wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 + NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 + Petite list used in FoFCou. + Initial guess orbital symmetries: + Alpha Orbitals: + Occupied (A1G) (A1G) (T1U) (T1U) + Virtual (T1U) (T1U) (T1U) (T1U) (A1G) + Beta Orbitals: + Occupied (A1G) (A1G) + Virtual (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (A1G) + Initial guess = 0.0000 = 0.0000 = 1.0000 = 2.0000 S= 1.0000 + Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=822740. + Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. + Requested convergence on MAX density matrix=1.00D-06. + Requested convergence on energy=1.00D-06. + No special actions if energy rises. + Density matrix breaks symmetry, PCut= 1.00D-04 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + SCF Done: E(UHF) = -37.4810698326 A.U. after 6 cycles + NFock= 6 Conv=0.55D-08 -V/T= 2.0033 + = 0.0000 = 0.0000 = 1.0000 = 2.0010 S= 1.0003 + = 0.000000000000E+00 + Annihilation of the first spin contaminant: + S**2 before annihilation 2.0010, after 2.0000 + ExpMin= 1.96D-01 ExpMax= 1.72D+02 ExpMxC= 1.72D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 + HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 + ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 + Range of M.O.s used for correlation: 2 9 + NBasis= 9 NAE= 4 NBE= 2 NFC= 1 NFV= 0 + NROrb= 8 NOA= 3 NOB= 1 NVA= 5 NVB= 7 + Semi-Direct transformation. + ModeAB= 2 MOrb= 3 LenV= 33458373 + LASXX= 66 LTotXX= 66 LenRXX= 66 + LTotAB= 132 MaxLAS= 1080 LenRXY= 1080 + NonZer= 1368 LenScr= 1048064 LnRSAI= 0 + LnScr1= 0 LExtra= 0 Total= 1049210 + MaxDsk= -1 SrtSym= F ITran= 4 + JobTyp=1 Pass 1: I= 1 to 3. + (rs|ai) integrals will be sorted in core. + ModeAB= 2 MOrb= 1 LenV= 33458373 + LASXX= 28 LTotXX= 28 LenRXX= 360 + LTotAB= 20 MaxLAS= 360 LenRXY= 20 + NonZer= 456 LenScr= 1048064 LnRSAI= 0 + LnScr1= 0 LExtra= 0 Total= 1048444 + MaxDsk= -1 SrtSym= F ITran= 4 + JobTyp=2 Pass 1: I= 1 to 1. + (rs|ai) integrals will be sorted in core. + Spin components of T(2) and E(2): + alpha-alpha T2 = 0.1539858699D-02 E2= -0.4542240933D-02 + alpha-beta T2 = 0.8342095977D-02 E2= -0.1907164950D-01 + beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00 + ANorm= 0.1004928831D+01 + E2 = -0.2361389043D-01 EUMP2 = -0.37504683723025D+02 + (S**2,0)= 0.20010D+01 (S**2,1)= 0.20001D+01 + E(PUHF)= -0.37481383594D+02 E(PMP2)= -0.37504849457D+02 + Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=802872. + Iterations= 50 Convergence= 0.100D-06 + Iteration Nr. 1 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + E(PMP3)= -0.37512313510D+02 + MP4(R+Q)= 0.19195405D-03 + E3= -0.75521070D-02 EUMP3= -0.37512235830D+02 + E4(DQ)= -0.27959200D-02 UMP4(DQ)= -0.37515031750D+02 + E4(SDQ)= -0.28114103D-02 UMP4(SDQ)= -0.37515047240D+02 + DE(Corr)= -0.30974220E-01 E(Corr)= -37.512044053 + NORM(A)= 0.10116679D+01 + Iteration Nr. 2 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.34987698E-01 E(CORR)= -37.516057530 Delta=-4.01D-03 + NORM(A)= 0.10140179D+01 + Iteration Nr. 3 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.36028974E-01 E(CORR)= -37.517098807 Delta=-1.04D-03 + NORM(A)= 0.10142146D+01 + Iteration Nr. 4 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.36098709E-01 E(CORR)= -37.517168542 Delta=-6.97D-05 + NORM(A)= 0.10141609D+01 + Iteration Nr. 5 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.36075425E-01 E(CORR)= -37.517145257 Delta= 2.33D-05 + NORM(A)= 0.10141784D+01 + Iteration Nr. 6 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.36082625E-01 E(CORR)= -37.517152457 Delta=-7.20D-06 + NORM(A)= 0.10141757D+01 + Iteration Nr. 7 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.36081518E-01 E(CORR)= -37.517151351 Delta= 1.11D-06 + NORM(A)= 0.10141759D+01 + Iteration Nr. 8 + ********************** + DD1Dir will call FoFMem 1 times, MxPair= 10 + NAB= 3 NAA= 3 NBB= 0. + DE(Corr)= -0.36081594E-01 E(CORR)= -37.517151426 Delta=-7.52D-08 + NORM(A)= 0.10141759D+01 + Dominant configurations: + *********************** + Spin Case I J A B Value + ABAB 2 2 5 3 -0.136608D+00 + Largest amplitude= 1.37D-01 + + S**2, projected HF & approx projected MPn energies after annihilation of + unwanted spin states (see manual for definitions): + + spins (S**2,0) (S**2,1) PUHF PMP2 PMP3 PMP4 + annihilated + s+1 2.00000 2.00000 -37.481384 -37.504849 -37.512314 + + Discarding MO integrals. + + ********************************************************************** + + Population analysis using the SCF density. + + ********************************************************************** + + Orbital symmetries: + Alpha Orbitals: + Occupied (A1G) (A1G) (?A) (?A) + Virtual (?A) (?A) (?A) (?A) (A1G) + Beta Orbitals: + Occupied (A1G) (A1G) + Virtual (?A) (?A) (?A) (?A) (?A) (?A) (A1G) + Unable to determine electronic state: an orbital has unidentified symmetry. + Alpha occ. eigenvalues -- -11.27250 -0.81446 -0.42596 -0.42596 + Alpha virt. eigenvalues -- 0.05294 0.89798 0.89798 0.97612 1.24659 + Beta occ. eigenvalues -- -11.23139 -0.57527 + Beta virt. eigenvalues -- 0.10809 0.16273 0.16273 1.01164 1.06359 + Beta virt. eigenvalues -- 1.06359 1.33242 + Condensed to atoms (all electrons): + 1 + 1 C 6.000000 + Atomic-Atomic Spin Densities. + 1 + 1 C 2.000000 + Mulliken charges and spin densities: + 1 2 + 1 C 0.000000 2.000000 + Sum of Mulliken charges = 0.00000 2.00000 + Mulliken charges and spin densities with hydrogens summed into heavy atoms: + 1 2 + 1 C 0.000000 2.000000 + Electronic spatial extent (au): = 13.3032 + Charge= 0.0000 electrons + Dipole moment (field-independent basis, Debye): + X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 + Quadrupole moment (field-independent basis, Debye-Ang): + XX= -4.7201 YY= -6.5866 ZZ= -6.5866 + XY= 0.0000 XZ= 0.0000 YZ= 0.0000 + Traceless Quadrupole moment (field-independent basis, Debye-Ang): + XX= 1.2443 YY= -0.6222 ZZ= -0.6222 + XY= 0.0000 XZ= 0.0000 YZ= 0.0000 + Octapole moment (field-independent basis, Debye-Ang**2): + XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 + XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 + YYZ= 0.0000 XYZ= 0.0000 + Hexadecapole moment (field-independent basis, Debye-Ang**3): + XXXX= -4.1347 YYYY= -7.1820 ZZZZ= -7.1820 XXXY= 0.0000 + XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 + ZZZY= 0.0000 XXYY= -1.8861 XXZZ= -1.8861 YYZZ= -2.3940 + XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 + N-N= 0.000000000000D+00 E-N=-8.757280191249D+01 KE= 3.735620893854D+01 + Symmetry AG KE= 3.487097636732D+01 + Symmetry B1G KE= 0.000000000000D+00 + Symmetry B2G KE= 0.000000000000D+00 + Symmetry B3G KE= 0.000000000000D+00 + Symmetry AU KE= 0.000000000000D+00 + Symmetry B1U KE= 1.242616285610D+00 + Symmetry B2U KE= 1.242616285610D+00 + Symmetry B3U KE= 4.658757089566D-33 + 1|1|UNPC-DUMINDA-T480S|SP|UCCSD-FC|3-21G|C1(3)|DRANA|07-Nov-2019|0||# + uccsd/3-21g geom=connectivity||Title Card Required||0,3|C,0,1.02510459 + ,0.95711297,0.||Version=IA32W-G09RevD.01|HF=-37.4810698|MP2=-37.504683 + 7|MP3=-37.5122358|MP4D=-37.5152237|MP4DQ=-37.5150318|PUHF=-37.4813836| + PMP2-0=-37.5048495|PMP3-0=-37.5123135|MP4SDQ=-37.5150472|CCSD=-37.5171 + 514|S2=2.000971|S2-1=2.000055|S2A=2.|RMSD=5.455e-009|PG=OH [O(C1)]||@ + + + I am not a vegetarian because I love animals; + I am a vegetarian because I hate plants. + -- A. Whitney Brown + Job cpu time: 0 days 0 hours 0 minutes 2.0 seconds. + File lengths (MBytes): RWF= 14 Int= 0 D2E= 0 Chk= 1 Scr= 1 + Normal termination of Gaussian 09 at Thu Nov 07 16:40:06 2019. diff --git a/arkane/data/UMP2_C_ATOM.LOG b/arkane/data/UMP2_C_ATOM.LOG new file mode 100755 index 0000000000..b71d7a22a4 --- /dev/null +++ b/arkane/data/UMP2_C_ATOM.LOG @@ -0,0 +1,274 @@ + Entering Link 1 = C:\G09W\l1.exe PID= 24808. + + Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, + Gaussian, Inc. All Rights Reserved. + + This is part of the Gaussian(R) 09 program. It is based on + the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), + the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), + the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), + the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), + the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), + the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), + the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon + University), and the Gaussian 82(TM) system (copyright 1983, + Carnegie Mellon University). Gaussian is a federally registered + trademark of Gaussian, Inc. + + This software contains proprietary and confidential information, + including trade secrets, belonging to Gaussian, Inc. + + This software is provided under written license and may be + used, copied, transmitted, or stored only in accord with that + written license. + + The following legend is applicable only to US Government + contracts under FAR: + + RESTRICTED RIGHTS LEGEND + + Use, reproduction and disclosure by the US Government is + subject to restrictions as set forth in subparagraphs (a) + and (c) of the Commercial Computer Software - Restricted + Rights clause in FAR 52.227-19. + + Gaussian, Inc. + 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 + + + --------------------------------------------------------------- + Warning -- This program may not be used in any manner that + competes with the business of Gaussian, Inc. or will provide + assistance to any competitor of Gaussian, Inc. The licensee + of this program is prohibited from giving any competitor of + Gaussian, Inc. access to this program. By using this program, + the user acknowledges that Gaussian, Inc. is engaged in the + business of creating and licensing software in the field of + computational chemistry and represents and warrants to the + licensee that it is not a competitor of Gaussian, Inc. and that + it will not use this program in any manner prohibited above. + --------------------------------------------------------------- + + + Cite this work as: + Gaussian 09, Revision D.01, + M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, + M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, + G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, + A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, + M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, + Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., + J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, + K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, + K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, + M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, + V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, + O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, + R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, + P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, + O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, + and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. + + ****************************************** + Gaussian 09: IA32W-G09RevD.01 24-Apr-2013 + 07-Nov-2019 + ****************************************** + %chk=C:\Users\drana\Desktop\work\Scratch\G09\MarkG\Energy\G09\ump2_C_atom.chk + ------------------------------ + # ump2/3-21g geom=connectivity + ------------------------------ + 1/38=1,57=2/1; + 2/12=2,17=6,18=5,40=1/2; + 3/5=5,11=2,16=1,25=1,30=1,116=2/1,2,3; + 4//1; + 5/5=2,38=5/2; + 8/10=1/1; + 9/16=-3/6; + 6/7=2,8=2,9=2,10=2/1; + 99/5=1,9=1/99; + ------------------- + Title Card Required + ------------------- + Symbolic Z-matrix: + Charge = 0 Multiplicity = 3 + C 1.0251 0.95711 0. + + Input orientation: + --------------------------------------------------------------------- + Center Atomic Atomic Coordinates (Angstroms) + Number Number Type X Y Z + --------------------------------------------------------------------- + 1 6 0 1.025105 0.957113 0.000000 + --------------------------------------------------------------------- + Stoichiometry C(3) + Framework group OH[O(C)] + Deg. of freedom 0 + Full point group OH NOp 48 + Largest Abelian subgroup D2H NOp 8 + Largest concise Abelian subgroup C1 NOp 1 + Standard orientation: + --------------------------------------------------------------------- + Center Atomic Atomic Coordinates (Angstroms) + Number Number Type X Y Z + --------------------------------------------------------------------- + 1 6 0 0.000000 0.000000 0.000000 + --------------------------------------------------------------------- + Standard basis: 3-21G (6D, 7F) + There are 3 symmetry adapted cartesian basis functions of AG symmetry. + There are 0 symmetry adapted cartesian basis functions of B1G symmetry. + There are 0 symmetry adapted cartesian basis functions of B2G symmetry. + There are 0 symmetry adapted cartesian basis functions of B3G symmetry. + There are 0 symmetry adapted cartesian basis functions of AU symmetry. + There are 2 symmetry adapted cartesian basis functions of B1U symmetry. + There are 2 symmetry adapted cartesian basis functions of B2U symmetry. + There are 2 symmetry adapted cartesian basis functions of B3U symmetry. + There are 3 symmetry adapted basis functions of AG symmetry. + There are 0 symmetry adapted basis functions of B1G symmetry. + There are 0 symmetry adapted basis functions of B2G symmetry. + There are 0 symmetry adapted basis functions of B3G symmetry. + There are 0 symmetry adapted basis functions of AU symmetry. + There are 2 symmetry adapted basis functions of B1U symmetry. + There are 2 symmetry adapted basis functions of B2U symmetry. + There are 2 symmetry adapted basis functions of B3U symmetry. + 9 basis functions, 15 primitive gaussians, 9 cartesian basis functions + 4 alpha electrons 2 beta electrons + nuclear repulsion energy 0.0000000000 Hartrees. + NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F + Integral buffers will be 262144 words long. + Raffenetti 2 integral format. + Two-electron integral symmetry is turned on. + One-electron integrals computed using PRISM. + NBasis= 9 RedAO= T EigKep= 6.75D-01 NBF= 3 0 0 0 0 2 2 2 + NBsUse= 9 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 0 0 0 2 2 2 + ExpMin= 1.96D-01 ExpMax= 1.72D+02 ExpMxC= 1.72D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 + Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. + HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 + ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 + FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 + NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T + wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 + NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 + Petite list used in FoFCou. + Initial guess orbital symmetries: + Alpha Orbitals: + Occupied (A1G) (A1G) (T1U) (T1U) + Virtual (T1U) (T1U) (T1U) (T1U) (A1G) + Beta Orbitals: + Occupied (A1G) (A1G) + Virtual (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (A1G) + Initial guess = 0.0000 = 0.0000 = 1.0000 = 2.0000 S= 1.0000 + Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=822740. + Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. + Requested convergence on MAX density matrix=1.00D-06. + Requested convergence on energy=1.00D-06. + No special actions if energy rises. + Density matrix breaks symmetry, PCut= 1.00D-04 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + Density matrix breaks symmetry, PCut= 1.00D-07 + Density has only Abelian symmetry. + SCF Done: E(UHF) = -37.4810698326 A.U. after 6 cycles + NFock= 6 Conv=0.55D-08 -V/T= 2.0033 + = 0.0000 = 0.0000 = 1.0000 = 2.0010 S= 1.0003 + = 0.000000000000E+00 + Annihilation of the first spin contaminant: + S**2 before annihilation 2.0010, after 2.0000 + ExpMin= 1.96D-01 ExpMax= 1.72D+02 ExpMxC= 1.72D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 + HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 + ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 + Range of M.O.s used for correlation: 2 9 + NBasis= 9 NAE= 4 NBE= 2 NFC= 1 NFV= 0 + NROrb= 8 NOA= 3 NOB= 1 NVA= 5 NVB= 7 + Fully in-core method, ICMem= 6005742. + JobTyp=2 Pass 1 fully in-core, NPsUse= 1. + Spin components of T(2) and E(2): + alpha-alpha T2 = 0.1539858699D-02 E2= -0.4542240933D-02 + alpha-beta T2 = 0.8342095977D-02 E2= -0.1907164950D-01 + beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00 + (S**2,0)= 0.20010D+01 (S**2,1)= 0.20001D+01 + E(PUHF)= -0.37481383594D+02 E(PMP2)= -0.37504849457D+02 + ANorm= 0.1004928831D+01 + E2 = -0.2361389043D-01 EUMP2 = -0.37504683723025D+02 + + ********************************************************************** + + Population analysis using the SCF density. + + ********************************************************************** + + Orbital symmetries: + Alpha Orbitals: + Occupied (A1G) (A1G) (?A) (?A) + Virtual (?A) (?A) (?A) (?A) (A1G) + Beta Orbitals: + Occupied (A1G) (A1G) + Virtual (?A) (?A) (?A) (?A) (?A) (?A) (A1G) + Unable to determine electronic state: an orbital has unidentified symmetry. + Alpha occ. eigenvalues -- -11.27250 -0.81446 -0.42596 -0.42596 + Alpha virt. eigenvalues -- 0.05294 0.89798 0.89798 0.97612 1.24659 + Beta occ. eigenvalues -- -11.23139 -0.57527 + Beta virt. eigenvalues -- 0.10809 0.16273 0.16273 1.01164 1.06359 + Beta virt. eigenvalues -- 1.06359 1.33242 + Condensed to atoms (all electrons): + 1 + 1 C 6.000000 + Atomic-Atomic Spin Densities. + 1 + 1 C 2.000000 + Mulliken charges and spin densities: + 1 2 + 1 C 0.000000 2.000000 + Sum of Mulliken charges = 0.00000 2.00000 + Mulliken charges and spin densities with hydrogens summed into heavy atoms: + 1 2 + 1 C 0.000000 2.000000 + Electronic spatial extent (au): = 13.3032 + Charge= 0.0000 electrons + Dipole moment (field-independent basis, Debye): + X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 + Quadrupole moment (field-independent basis, Debye-Ang): + XX= -4.7201 YY= -6.5866 ZZ= -6.5866 + XY= 0.0000 XZ= 0.0000 YZ= 0.0000 + Traceless Quadrupole moment (field-independent basis, Debye-Ang): + XX= 1.2443 YY= -0.6222 ZZ= -0.6222 + XY= 0.0000 XZ= 0.0000 YZ= 0.0000 + Octapole moment (field-independent basis, Debye-Ang**2): + XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 + XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 + YYZ= 0.0000 XYZ= 0.0000 + Hexadecapole moment (field-independent basis, Debye-Ang**3): + XXXX= -4.1347 YYYY= -7.1820 ZZZZ= -7.1820 XXXY= 0.0000 + XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 + ZZZY= 0.0000 XXYY= -1.8861 XXZZ= -1.8861 YYZZ= -2.3940 + XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 + N-N= 0.000000000000D+00 E-N=-8.757280191249D+01 KE= 3.735620893854D+01 + Symmetry AG KE= 3.487097636732D+01 + Symmetry B1G KE= 0.000000000000D+00 + Symmetry B2G KE= 0.000000000000D+00 + Symmetry B3G KE= 0.000000000000D+00 + Symmetry AU KE= 0.000000000000D+00 + Symmetry B1U KE= 1.242616285610D+00 + Symmetry B2U KE= 1.242616285610D+00 + Symmetry B3U KE= 4.658757089566D-33 + 1|1|UNPC-DUMINDA-T480S|SP|UMP2-FC|3-21G|C1(3)|DRANA|07-Nov-2019|0||# u + mp2/3-21g geom=connectivity||Title Card Required||0,3|C,0,1.02510459,0 + .95711297,0.||Version=IA32W-G09RevD.01|HF=-37.4810698|MP2=-37.5046837| + PUHF=-37.4813836|PMP2-0=-37.5048495|S2=2.000971|S2-1=2.000055|S2A=2.|R + MSD=5.455e-009|PG=OH [O(C1)]||@ + + + I am not a vegetarian because I love animals; + I am a vegetarian because I hate plants. + -- A. Whitney Brown + Job cpu time: 0 days 0 hours 0 minutes 1.0 seconds. + File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 + Normal termination of Gaussian 09 at Thu Nov 07 16:40:29 2019. diff --git a/arkane/gaussianTest.py b/arkane/gaussianTest.py index 3d60188f09..219f9ec9ee 100644 --- a/arkane/gaussianTest.py +++ b/arkane/gaussianTest.py @@ -44,6 +44,7 @@ from arkane.statmech import determine_qm_software from arkane.exceptions import LogError + ################################################################################ @@ -81,6 +82,24 @@ def test_load_ethylene_from_gaussian_log_cbsqb3(self): self.assertEqual(conformer.spin_multiplicity, 1) self.assertEqual(conformer.optical_isomers, 1) + def test_gaussian_energies(self): + """ + test parsing double hydride, MP2, CCSD, CCSD(T) form Gaussian log + """ + log_doublehybrid = GaussianLog(os.path.join(os.path.dirname(__file__), 'data', 'B2PLYP.LOG')) + log_mp2 = GaussianLog(os.path.join(os.path.dirname(__file__), 'data', 'UMP2_C_ATOM.LOG')) + log_ccsd = GaussianLog(os.path.join(os.path.dirname(__file__), 'data', 'UCCSD_C_ATOM.LOG')) + log_ccsdt = GaussianLog(os.path.join(os.path.dirname(__file__), 'data', 'UCCSDT_C_ATOM.LOG')) + + self.assertAlmostEqual(log_doublehybrid.load_energy() / constants.Na / constants.E_h, -0.40217794572194e+02, + delta=1e-4) + self.assertAlmostEqual(log_mp2.load_energy() / constants.Na / constants.E_h, -0.37504683723025e+02, + delta=1e-4) + self.assertAlmostEqual(log_ccsd.load_energy() / constants.Na / constants.E_h, -37.517151426, + delta=1e-4) + self.assertAlmostEqual(log_ccsdt.load_energy() / constants.Na / constants.E_h, -0.37517454469e+02, + delta=1e-4) + def test_load_oxygen_from_gaussian_log(self): """ Uses a Gaussian03 log file for oxygen (O2) to test that its From e914aa453eedfdeea54240f777d2a82cb3b3191f Mon Sep 17 00:00:00 2001 From: Duminda Date: Sat, 9 Nov 2019 12:26:40 -0500 Subject: [PATCH 4/4] add ccsd(t), ccsd, mp2, and double-hybrid to Gaussian parser --- arkane/gaussian.py | 2 +- arkane/gaussianTest.py | 11 +++++++---- 2 files changed, 8 insertions(+), 5 deletions(-) diff --git a/arkane/gaussian.py b/arkane/gaussian.py index c2a7b74657..13bedfc86e 100644 --- a/arkane/gaussian.py +++ b/arkane/gaussian.py @@ -274,7 +274,7 @@ def load_energy(self, zpe_scale_factor=1.): if 'SCF Done:' in line: e_elect = float(line.split()[4]) * constants.E_h * constants.Na elect_energy_source = 'SCF' - elif ' E2(' in line: + elif ' E2(' in line and ' E(' in line: e_elect = float(line.split()[-1].replace('D', 'E')) * constants.E_h * constants.Na elect_energy_source = 'doublehybrd or MP2' elif 'MP2 =' in line: diff --git a/arkane/gaussianTest.py b/arkane/gaussianTest.py index 219f9ec9ee..73c10ebe05 100644 --- a/arkane/gaussianTest.py +++ b/arkane/gaussianTest.py @@ -90,15 +90,18 @@ def test_gaussian_energies(self): log_mp2 = GaussianLog(os.path.join(os.path.dirname(__file__), 'data', 'UMP2_C_ATOM.LOG')) log_ccsd = GaussianLog(os.path.join(os.path.dirname(__file__), 'data', 'UCCSD_C_ATOM.LOG')) log_ccsdt = GaussianLog(os.path.join(os.path.dirname(__file__), 'data', 'UCCSDT_C_ATOM.LOG')) + log_qb3 = GaussianLog(os.path.join(os.path.dirname(__file__), '../examples/arkane/species/C2H5/', 'ethyl_cbsqb3.log')) self.assertAlmostEqual(log_doublehybrid.load_energy() / constants.Na / constants.E_h, -0.40217794572194e+02, - delta=1e-4) + delta=1e-6) self.assertAlmostEqual(log_mp2.load_energy() / constants.Na / constants.E_h, -0.37504683723025e+02, - delta=1e-4) + delta=1e-6) self.assertAlmostEqual(log_ccsd.load_energy() / constants.Na / constants.E_h, -37.517151426, - delta=1e-4) + delta=1e-6) self.assertAlmostEqual(log_ccsdt.load_energy() / constants.Na / constants.E_h, -0.37517454469e+02, - delta=1e-4) + delta=1e-6) + self.assertAlmostEqual(log_qb3.load_energy() / constants.Na / constants.E_h, -79.029798, + delta=1e-6) def test_load_oxygen_from_gaussian_log(self): """