-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.txt
112 lines (80 loc) · 3.48 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Title: Fast Frontal Face and Eye Detection using Viola-Jones Object Detection
Author: Ryan Camilleri (328400L)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Directory: cascade_500p_1000n_10s
------------------------------------
Contains the face cascade classifier with the following parameters:
# 500 positive images
# 1000 negative images
# 10 training stages
# 0.4 max false alarm rate
# 0.995 min hit rate (default)
- Directory: cascade_500p_1000n_10s_0.991hr
------------------------------------
Contains the face cascade classifier with the following parameters:
# 500 positive images
# 1000 negative images
# 9 training stages
# 0.4 max false alarm rate
# 0.991 min hit rate
- Directory: cascade_500p_1000n_10s_0.999hr
------------------------------------
Contains the face cascade classifier with the following parameters:
# 500 positive images
# 1000 negative images
# 10 training stages
# 0.4 max false alarm rate
# 0.999 min hit rate
- Directory: cascade_1000p_500n_10s
------------------------------------
Contains the face cascade classifier with the following parameters:
# 1000 positive images
# 500 negative images
# 10 training stages
# 0.4 max false alarm rate
# 0.995 min hit rate (default)
- Directory: cascade_750p_750n_10s
------------------------------------
Contains the face cascade classifier with the following parameters:
# 750 positive images
# 750 negative images
# 10 training stages
# 0.4 max false alarm rate
# 0.995 min hit rate (default)
- Directory: haarcascades
------------------------------------
Contains two cascade models for face and eye detection obtained from [1].
- Directory: negatives
------------------------------------
Used to contain the whole data set of negative images used for training [2]. (These were removed due to size restrictions.)
- Directory: positives
------------------------------------
Used to contain the whole data set of positive images used for training [3]. (These were removed due to size restrictions.)
- Directory: test_images
------------------------------------
Contains the 3 test images used for evaluating classifiers in artifact 1.
- File: negatives.txt
------------------------------------
Descriptor file containing paths to all the negative images within the negatives directory
- File: positives.txt
------------------------------------
Descriptor file containing paths to all the positive images within the positives directory. The paths also include the annotated bounding boxes which indicate the face region in the image.
- File: positives.vec
------------------------------------
A vector file created from the positives.txt. This file is required for classifier training. (This was removed due to size restrictions)
- Script: task1.py
------------------------------------
Python script containing code for artifact 1
- Script: task2.py
------------------------------------
Python script containing code for artifact 2
- Script: utils.py
------------------------------------
Python script containing functions to build the negatives.txt and positives.txt files.
Links
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[1] https://github.com/opencv/opencv/tree/master/data/haarcascades
[2] https://www.kaggle.com/yeayates21/garage-detection-unofficial-ssl-challenge
[3] https://www.kaggle.com/greatgamedota/ffhq-face-data-set
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~