forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDontCast.lua
124 lines (108 loc) · 3.74 KB
/
DontCast.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
local DontCast, parent = torch.class("nn.DontCast", "nn.Decorator")
-- utility functions
local function recursiveTypeCopy(dst, src, type_str)
if torch.type(src) == 'table' then
dst = (torch.type(dst) == 'table') and dst or {}
for k, v in pairs(src) do
dst[k] = recursiveTypeCopy(dst[k], v, type_str)
end
elseif torch.isTensor(src) then
dst = (torch.type(dst) == type_str) and dst or torch.getmetatable(type_str).new()
dst:resize(src:size())
if src:nElement() > 0 then
dst:copy(src)
end
end
return dst
end
local function tableTensorType(src)
if type(src) == 'table' then -- Note: don't use torch.type here
local type_str, found
for k,v in pairs(src) do
type_str, found = tableTensorType(v)
if found then
return type_str, true
end
end
return type_str, found
else
return torch.type(src), torch.isTensor(src)
end
end
-- DontCast methods and constructor
function DontCast:__init(module, castin, castout, moduleType)
parent.__init(self, module)
self.castin = castin
self.castout = (castout == nil) and castin or castout
self.moduleType = moduleType
if (self.castin or self.castout) and not self.moduleType then
local moduleType, found = tableTensorType(module.output)
if found then
self.moduleType = moduleType
else
moduleType, found = tableTensorType(module:parameters())
if found then
self.moduleType = moduleType
else
error"Cannot extrapolate moduleType. Provide constructor argument 4"
end
end
end
end
function DontCast:updateOutput(input)
if self.castin and tableTensorType(input) ~= self.moduleType then
self._input = recursiveTypeCopy(self._input, input, self.moduleType)
input = self._input
end
local output = self.modules[1]:updateOutput(input)
if self.castout then
self.output = recursiveTypeCopy(self.output, output, tableTensorType(self.output))
else
self.output = output
end
return self.output
end
function DontCast:updateGradInput(input, gradOutput)
if self.castin and tableTensorType(input) ~= self.moduleType then
input = self._input
end
if self.castout and tableTensorType(gradOutput) ~= self.moduleType then
self._gradOutput = recursiveTypeCopy(self._gradOutput, gradOutput, self.moduleType)
gradOutput = self._gradOutput
end
local gradInput = self.modules[1]:updateGradInput(input, gradOutput)
if self.castin then
self.gradInput = recursiveTypeCopy(self.gradInput, gradInput, tableTensorType(self.gradInput))
else
self.gradInput = gradInput
end
return self.gradInput
end
function DontCast:accGradParameters(input, gradOutput, scale)
if self.castin and tableTensorType(input) ~= self.moduleType then
input = self._input
end
if self.castout and tableTensorType(gradOutput) ~= self.moduleType then
gradOutput = self._gradOutput
end
self.modules[1]:accGradParameters(input, gradOutput, scale)
end
function DontCast:accUpdateGradParameters(input, gradOutput, lr)
if self.castin and tableTensorType(input) ~= self.moduleType then
input = self._input
end
if self.castout and tableTensorType(gradOutput) ~= self.moduleType then
gradOutput = self._gradOutput
end
self.modules[1]:accUpdateGradParameters(input, gradOutput, lr)
end
-- dont cast (the essence thereof)
function DontCast:type(type)
if self.castout and tableTensorType(self.output) ~= type then
self.output = recursiveTypeCopy(nil, self.output, type)
end
if self.castin and tableTensorType(self.gradInput) ~= type then
self.gradInput = recursiveTypeCopy(nil, self.gradInput, type)
end
return self
end