forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCAdd.lua
127 lines (106 loc) · 3.4 KB
/
CAdd.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
local CAdd, parent = torch.class("nn.CAdd", "nn.Module")
function CAdd:__init(...)
parent.__init(self)
local arg = {...}
self.size = torch.LongStorage()
local n = #arg
if n == 1 and torch.type(arg[1]) == 'torch.LongStorage' then
self.size:resize(#arg[1]):copy(arg[1])
else
self.size:resize(n)
for i=1,n do
self.size[i] = arg[i]
end
end
self.bias = torch.Tensor(self.size)
self.gradBias = torch.Tensor(self.size)
self.output:resize(self.size)
self:reset()
end
function CAdd:reset(stdv)
if stdv then
--std of uniform distribution on interval [-a,a] = a/sqrt(3)
stdv = stdv * math.sqrt(3)
else
stdv = 1.0/math.sqrt(self.bias:nElement())
end
self.bias:uniform(-stdv,stdv)
end
function CAdd:updateOutput(input)
self._output = self._output or input.new()
self._bias = self._bias or input.new()
self._expand = self._expand or input.new()
self._repeat = self._repeat or input.new()
self.output:resizeAs(input):copy(input)
if input:nElement() == self.bias:nElement() then
self.output:add(self.bias)
else
if self.bias:dim() == input:dim() then
self._output:set(self.output)
self._bias:set(self.bias)
else
local batchSize = input:size(1)
self._output:view(self.output, batchSize, -1)
self._bias:view(self.bias, 1, -1)
end
self._expand:expandAs(self._bias, self._output)
--expandAs uses stride 0 and self._expand is not contiguous
--cuda ops may assume contiguous input
if torch.type(input) == 'torch.CudaTensor' then
self._repeat:resizeAs(self._expand):copy(self._expand)
self._output:add(self._repeat)
else
self._output:add(self._expand)
end
end
return self.output
end
function CAdd:updateGradInput(input, gradOutput)
self.gradInput = self.gradInput or input.new()
self.gradInput:resizeAs(gradOutput):copy(gradOutput)
return self.gradInput
end
function CAdd:accGradParameters(input, gradOutput, scale)
scale = scale or 1
self._gradBias = self._gradBias or gradOutput.new()
self._gradOutput = self._gradOutput or gradOutput.new()
self._repeat = self._repeat or gradOutput.new()
if self.bias:nElement() == gradOutput:nElement() then
self.gradBias:add(scale, gradOutput)
else
if self.bias:dim() == gradOutput:dim() then
self._gradBias:set(self.gradBias)
self._gradOutput:set(gradOutput)
else
local batchSize = input:size(1)
self._gradBias:view(self.gradBias, 1, -1)
self._gradOutput:view(gradOutput, batchSize, -1)
end
self._gradBias:expandAs(self._gradBias, self._gradOutput)
--expandAs uses stride 0 and self._gradBias is not contiguous
--cuda ops may assume contiguous input
if torch.type(self._gradBias) == 'torch.CudaTensor' then
self._repeat:resizeAs(self._gradBias):copy(self._gradBias)
self._repeat:add(scale, self._gradOutput)
self._gradBias:copy(self._repeat)
else
self._gradBias:add(scale, self._gradOutput)
end
end
end
function CAdd:type(type, tensorCache)
if type then
self:clearState()
end
return parent.type(self, type, tensorCache)
end
function CAdd:clearState()
nn.utils.clear(self, {
'_gradBias',
'_expand',
'_output',
'_bias',
'_repeat'
})
return parent.clearState(self)
end