-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNHEK_training.py
304 lines (241 loc) · 10.6 KB
/
NHEK_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os.path as osp
import os
import random
import torch
import torch.nn.functional as F
import torch.nn as nn
from data_make import DSB
from torch_geometric.data import DataLoader, NeighborSampler
from torch_geometric.nn import GATConv, GNNExplainer
from torch_geometric.nn import JumpingKnowledge
import csv
import time
from tqdm import tqdm
import numpy as np
import copy
from sklearn import svm
import dgl
from gnn_explainer import GNNExplainer
import argparse
from gnn_explainer import GNNExplainer
from sklearn.metrics import roc_auc_score
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import plot_precision_recall_curve
from sklearn import preprocessing
from sklearn.preprocessing import OneHotEncoder
from torch_geometric.utils import to_undirected
from torch_geometric.utils import add_self_loops
import matplotlib.pyplot as plt
# settings
parser = argparse.ArgumentParser(description='GNN baselines')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--test_chr', type=int, default=1,
help='which chromosome used to be test')
parser.add_argument('--learning_rate', type=float, default=0.003,
help='learning_rate')
parser.add_argument('--epoch', type=int, default=100,
help='training_epoch')
parser.add_argument('--sleep_time', type=int, default=0,
help='wait for run')
args = parser.parse_args()
test_chr = args.test_chr
epoch_num = args.epoch
learning_rate = args.learning_rate
device_num = args.device
time.sleep(args.sleep_time)
starttime = time.time()
device = torch.device('cuda:' + str(args.device) if torch.cuda.is_available() else 'cpu')
train_list = []
print('test_chr:', test_chr)
data = []
for i in range(1, 24):
g = dgl.load_graphs("/data/NHEK_dgl_data/chr_" + str(i) + ".dgl")[0][0]
# g = dgl.remove_self_loop(g)
g.ndata['node_id'] = g.nodes().reshape(g.nodes().shape[0], 1)
g_density = np.loadtxt('/data/NHEK/Node_EpiFeature_5000_2/chr' + str(i) + '.density.txt')
g.ndata['density'] = torch.from_numpy(g_density)
density_mean_1 = np.nanmean(g_density[:,0])
density_mean_2 = np.nanmean(g_density[:,1])
nan_index_1 = torch.isnan(g.ndata['density'][:,0])
nan_index_2 = torch.isnan(g.ndata['density'][:,1])
g.ndata['density'][:, 0][nan_index_1] = density_mean_1
g.ndata['density'][:, 1][nan_index_2] = density_mean_2
data.append(g)
if test_chr == 23:
valid_chr = 1
g_test = data[22]
data.pop(22)
g_valid = data[0]
data.pop(0)
else:
valid_chr = test_chr + 1
g_test = data[test_chr - 1]
g_valid = data[valid_chr - 1]
data.pop(test_chr - 1)
data.pop(test_chr - 1)
# preprocess
train_feats = torch.zeros(0, g.ndata['seq_feature'].shape[1])
train_density = torch.zeros(0,2)
train_edge_feats = torch.zeros(0, 1)
for graph in data:
train_feats = torch.cat([train_feats, graph.ndata['seq_feature']], 0)
train_density = torch.cat([train_density, graph.ndata['density']], 0)
# train_edge_feats = torch.cat([train_edge_feats, graph.edata['edge_feature'].view(graph.edata['edge_feature'].shape[0], 1)], 0)
scaler = preprocessing.StandardScaler().fit(train_feats)
density_scaler = preprocessing.StandardScaler().fit(train_density)
# edge_scaler = preprocessing.StandardScaler().fit(train_edge_feats)
for graph in data:
graph.ndata['feat'] = torch.from_numpy(scaler.transform(graph.ndata['seq_feature'])).float()
graph.ndata['density_feat'] = torch.from_numpy(density_scaler.transform(graph.ndata['density'])).float()
# graph.ndata['deg'] = graph.out_degrees().float().clamp(min=1)
# graph.edata['edge_feature'] = graph.edata['edge_feature'].view(graph.edata['edge_feature'].shape[0], 1)
# graph.edata['feat'] = torch.from_numpy(edge_scaler.transform(graph.edata['edge_feature'])).float()
graph.ndata['feat'] = torch.cat((graph.ndata['feat'], graph.ndata['density_feat']), dim=1)
N = graph.num_nodes()
g_valid.ndata['feat'] = torch.from_numpy(scaler.transform(g_valid.ndata['seq_feature'])).float()
g_valid.ndata['density_feat'] = torch.from_numpy(density_scaler.transform(g_valid.ndata['density'])).float()
g_valid.ndata['deg'] = g_valid.out_degrees().float().clamp(min=1)
# g_valid.edata['edge_feature'] = g_valid.edata['edge_feature'].view(g_valid.edata['edge_feature'].shape[0], 1)
# g_valid.edata['feat'] = torch.from_numpy(edge_scaler.transform(g_valid.edata['edge_feature'])).float()
g_valid.ndata['feat'] = torch.cat((g_valid.ndata['feat'], g_valid.ndata['density_feat']), dim=1)
g_test.ndata['feat'] = torch.from_numpy(scaler.transform(g_test.ndata['seq_feature'])).float()
g_test.ndata['density_feat'] = torch.from_numpy(density_scaler.transform(g_test.ndata['density'])).float()
g_test.ndata['deg'] = g_test.out_degrees().float().clamp(min=1)
# g_test.edata['edge_feature'] = g_test.edata['edge_feature'].view(g_test.edata['edge_feature'].shape[0], 1)
# g_test.edata['feat'] = torch.from_numpy(edge_scaler.transform(g_test.edata['edge_feature'])).float()
g_test.ndata['feat'] = torch.cat((g_test.ndata['feat'], g_test.ndata['density_feat']), dim=1)
# Net
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.line = torch.nn.Linear(1346, 32)
self.batch_norm = torch.nn.BatchNorm1d(32)
for i in range(1, 3):
setattr(self, 'conv{}'.format(i), GATConv(32, 8, heads=4))
setattr(self, 'line{}'.format(i), nn.Linear(32, 32))
setattr(self, 'dropout{}'.format(i), nn.Dropout(p=0.5))
setattr(self, 'batchnorm{}'.format(i), nn.BatchNorm1d(32))
self.jk = JumpingKnowledge(mode='cat')
self.fc = nn.Linear(32 + 2 * 32, 16)
self.last_line = torch.nn.Linear(16, 1)
def forward(self, x, edge_index):
layer_out = []
x = F.relu(self.line(x.float()))
x = F.dropout(x, p=0.5, training=self.training)
layer_out.append(x)
for i in range(1, 3):
conv = getattr(self, 'conv{}'.format(i))
line = getattr(self, 'line{}'.format(i))
batchnorm = getattr(self, 'batchnorm{}'.format(i))
dropout = getattr(self, 'dropout{}'.format(i))
x = F.elu(conv(x, edge_index) + line(x))
# x = batchnorm(x)
x = dropout(x)
layer_out.append(x)
h = self.jk(layer_out)
h = F.relu(self.fc(h))
h = self.last_line(h)
h = torch.sigmoid(h).squeeze()
return h
model = Net().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
def train(epoch, train_list, model):
model.train()
lenth = len(train_list)
pbar = tqdm(total= lenth)
pbar.set_description(f'Epoch {epoch:02d}')
total_loss = 0
ys, preds = torch.tensor([]).to(device), torch.tensor([]).to(device)
loss_op = torch.nn.BCELoss()
for g_train in train_list:
x = g_train.ndata['feat'].to(device)
y = g_train.ndata['label'].to(device)
edge_index = torch.cat((g_train.edges()[0].reshape(1, g_train.edges()[0].shape[0]),
g_train.edges()[1].reshape(1, g_train.edges()[1].shape[0])), 0).to(torch.int64).to(
device)
# edge_index = to_undirected(edge_index)
edge_index = add_self_loops(edge_index)[0]
optimizer.zero_grad()
out = model(x, edge_index)
loss = loss_op(out.float(), y.squeeze().float())
total_loss += loss.item()
loss.backward()
optimizer.step()
ys = torch.cat([ys, y])
preds = torch.cat([preds, out])
pbar.update(1)
pbar.close()
ys, preds = ys.squeeze(), preds.squeeze()
ys, preds = ys.cpu().detach().numpy(), preds.cpu().detach().numpy()
return total_loss / lenth, roc_auc_score(ys, preds), ys, preds
@torch.no_grad()
def validation(g_valid, model):
model.eval()
loss_op = torch.nn.BCELoss()
ys, preds = torch.tensor([]).to(device), torch.tensor([]).to(device)
x = g_valid.ndata['feat'].to(device)
y = g_valid.ndata['label'].to(device)
edge_index = torch.cat((g_valid.edges()[0].reshape(1, g_valid.edges()[0].shape[0]),
g_valid.edges()[1].reshape(1, g_valid.edges()[1].shape[0])), 0).to(torch.int64).to(device)
# edge_index = to_undirected(edge_index)
edge_index = add_self_loops(edge_index)[0]
out = model(x, edge_index)
loss = loss_op(out.float(), y.squeeze().float())
ys = torch.cat([ys, y])
preds = torch.cat([preds, out])
ys, preds = ys.squeeze(), preds.squeeze()
ys, preds = ys.cpu().detach().numpy(), preds.cpu().detach().numpy()
return roc_auc_score(ys, preds), ys, preds, loss
@torch.no_grad()
def test(g_test, model):
model.eval()
ys, preds = torch.tensor([]).to(device), torch.tensor([]).to(device)
x = g_test.ndata['feat'].to(device)
y = g_test.ndata['label'].to(device)
edge_index = torch.cat((g_test.edges()[0].reshape(1, g_test.edges()[0].shape[0]),
g_test.edges()[1].reshape(1, g_test.edges()[1].shape[0])), 0).to(torch.int64).to(device)
print(edge_index.shape)
# edge_index = to_undirected(edge_index)
# edge_index = add_self_loops(edge_index)[0]
out = model(x, edge_index)
ys = torch.cat([ys, y])
preds = torch.cat([preds, out])
ys, preds = ys.squeeze(), preds.squeeze()
ys, preds = ys.cpu().detach().numpy(), preds.cpu().detach().numpy()
return roc_auc_score(ys, preds), ys, preds
epoch_fig=[]
loss_fig=[]
train_auc_fig=[]
test_auc_fig=[]
best_loss = 100
best_epoch = 0
best_valid_auc = 0.5
for epoch in range(1, args.epoch):
random.shuffle(data)
loss, train_auc, train_y_train, train_y_pred = train(epoch, data, model)
valid_auc, valid_y_test, valid_y_pred, valid_loss = validation(g_valid, model)
test_auc, test_y_test, test_y_pred = test(g_test, model)
print('\n')
print('Epoch: {:02d}, Train_Loss: {:.4f}, Train_AUC: {:.4f} , '
'Valid_Loss: {:.4f}, Valid_AUC: {:.4f}, Test_AUC: {:.4f} '.format(
epoch, loss, train_auc, valid_loss, valid_auc, test_auc))
print('\n')
if valid_loss < best_loss:
best_loss = valid_loss
best_epoch = epoch
best_valid_auc = valid_auc
checkpoint = copy.deepcopy(model)
es = 0
else:
es += 1
if es > 9:
break
print('best_epoch:{:.4f}, best_valid_loss:{:.4f}, best_valid_auc:{:.4f}' .format(best_epoch, best_loss, best_valid_auc))
endtime = time.time()
dtime = endtime - starttime
print("time:%.8s s" % dtime)
model = checkpoint
# test_auc, test_y_test, test_y_pred = test()
# print(test_auc)
torch.save(model, 'model/NHEK_model/chr_'+ str(args.test_chr) +'.pt')