-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrandom_walk_3D.py
48 lines (40 loc) · 1.24 KB
/
random_walk_3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# https://www.codingem.com/random-walk-in-python/
import matplotlib.pyplot as plt
import numpy as np
import random
def randomwalk3D(n):
x, y, z = np.zeros(n), np.zeros(n), np.zeros(n)
# jodi sob dike jawar probablity same hoy
directions = ["UP", "DOWN", "LEFT", "RIGHT", "IN", "OUT"]
for i in range(1, n):
step = random.choice(directions)
if step == "RIGHT":
x[i] = x[i - 1] + 1
y[i] = y[i - 1]
z[i] = z[i - 1]
elif step == "LEFT":
x[i] = x[i - 1] - 1
y[i] = y[i - 1]
z[i] = z[i - 1]
elif step == "UP":
x[i] = x[i - 1]
y[i] = y[i - 1] + 1
z[i] = z[i - 1]
elif step == "DOWN":
x[i] = x[i - 1]
y[i] = y[i - 1] - 1
z[i] = z[i - 1]
elif step == "IN":
x[i] = x[i - 1]
y[i] = y[i - 1]
z[i] = z[i - 1] - 1
elif step == "OUT":
x[i] = x[i - 1]
y[i] = y[i - 1]
z[i] = z[i - 1] + 1
return x, y, z
x_data, y_data, z_data = randomwalk3D(1000)
ax = plt.subplot(1, 1, 1, projection='3d')
ax.plot(x_data, y_data, z_data, alpha=0.9)
ax.scatter(x_data[-1], y_data[-1], z_data[-1])
plt.show()